Suppr超能文献

Identification of the ATP-binding domain of vaccinia virus thymidine kinase.

作者信息

Black M E, Hruby D E

机构信息

Department of Microbiology, Oregon State University, Corvallis 97331-3804.

出版信息

J Biol Chem. 1990 Oct 15;265(29):17584-92.

PMID:2211649
Abstract

Although small in size (20 kDa), the vaccinia virus (VV) thymidine kinase protein (EC 2.7.1.21 TK) is a relatively complex enzyme which must contain domains involved in binding both substrates (ATP and thymidine) and a feedback inhibitor (dTTP), as well as sequences directing the association of individual protein monomers into a functional tetrameric enzyme. Alignment of predicted amino acid sequences of the thymidine kinase genes from a variety of sources was used to identify highly conserved regions as a first step toward locating potential regions housing essential domains. A conserved domain (domain I) near the amino terminus of VV TK protein had characteristics consistent with a nucleotide-binding site. Analysis of the nucleotide substrate specificity of VV TK indicated that ATP acts as the major phosphate donor for thymidine phosphorylation while GTP, CTP, and UTP were inefficient substrates. Site-directed mutagenesis was performed on domain I to generate 11 mutant enzymes. Comparison of the wild-type and mutant proteins with regard to enzyme activity revealed that two of the mutant enzymes, T18 and S19, exhibited enhanced enzyme activity (3.73-fold and 1.35-fold, respectively) relative to the control. The other mutations introduced led to greatly reduced levels of enzyme activity which correlated with a reduced or altered ability of the mutant enzymes to bind ATP as determined by ATP-agarose affinity chromatography. Wild-type VV TK bound to an ATP affinity column could also be eluted with dTTP. Glycerol gradient separation of wild-type TK in the presence or absence of dTTP indicated that dissociation of the tetrameric complex was not the means by which enzymatic inhibition was achieved. Taken together, these results suggest that (i) domain I (amino acids 11-22) of the VV TK corresponds to the ATP-binding site, and (ii) that dTTP is able to interfere with ATP binding, either directly or indirectly, and thereby inhibit enzymatic activity without dissociating the native enzyme.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验