MRC Laboratory of Molecular Biology, Cambridge, UK.
Oncogene. 2012 Aug 9;31(32):3655-66. doi: 10.1038/onc.2011.532. Epub 2011 Nov 28.
Somatic missense mutations in PIK3CA, which encodes the p110α catalytic subunit of phosphoinositide 3-kinases, occur frequently in human cancers. Activating mutations spread across multiple domains, some of which are located at inhibitory contact sites formed with the regulatory subunit p85α. PIK3R1, which encodes p85α, also has activating somatic mutations. We find a strong correlation between lipid kinase and lipid-binding activities for both wild-type (WT) and a representative set of oncogenic mutant complexes of p110α/p85α. Lipid binding involves both electrostatic and hydrophobic interactions. Activation caused by a phosphorylated receptor tyrosine kinase (RTK) peptide binding to the p85α N-terminal SH2 domain (nSH2) induces lipid binding. This depends on the polybasic activation loop as well as a conserved hydrophobic motif in the C-terminal region of the kinase domain. The hotspot E545K mutant largely mimics the activated WT p110α. It shows the highest basal activity and lipid binding, and is not significantly activated by an RTK phosphopeptide. Both the hotspot H1047R mutant and rare mutations (C420R, M1043I, H1047L, G1049R and p85α-N564D) also show increased basal kinase activities and lipid binding. However, their activities are further enhanced by an RTK phosphopeptide to levels markedly exceeding that of activated WT p110α. Phosphopeptide binding to p110β/p85α and p110δ/p85α complexes also induces their lipid binding. We present a crystal structure of WT p110α complexed with the p85α inter-SH2 domain and the inhibitor PIK-108. Additional to the ATP-binding pocket, an unexpected, second PIK-108 binding site is observed in the kinase C-lobe. We show a global conformational change in p110α consistent with allosteric regulation of the kinase domain by nSH2. These findings broaden our understanding of the differential biological outputs exhibited by distinct types of mutations regarding growth factor dependence, and suggest a two-tier classification scheme relating p110α and p85α mutations with signalling potential.
PIK3CA 编码磷酯酰肌醇 3-激酶的 p110α 催化亚基,其体细胞错义突变在人类癌症中频繁发生。激活突变发生在多个结构域,其中一些位于与调节亚基 p85α 形成的抑制性接触部位。编码 p85α 的 PIK3R1 也有激活的体细胞突变。我们发现野生型(WT)和一组代表性的致癌突变 p110α/p85α 复合物的脂质激酶和脂质结合活性之间存在很强的相关性。脂质结合涉及静电和疏水相互作用。由磷酸化受体酪氨酸激酶(RTK)肽结合到 p85α N 端 SH2 结构域(nSH2)引起的激活诱导脂质结合。这取决于多碱性激活环以及激酶结构域 C 末端的保守疏水模体。热点 E545K 突变体在很大程度上模拟了激活的 WT p110α。它显示出最高的基础活性和脂质结合,并且不受 RTK 磷酸肽的显著激活。热点 H1047R 突变体和罕见突变(C420R、M1043I、H1047L、G1049R 和 p85α-N564D)也显示出增强的基础激酶活性和脂质结合。然而,它们的活性通过 RTK 磷酸肽进一步增强到显著超过激活的 WT p110α的水平。RTK 磷酸肽与 p110β/p85α 和 p110δ/p85α 复合物的结合也诱导它们的脂质结合。我们展示了 WT p110α 与 p85α 间 SH2 结构域和抑制剂 PIK-108 形成的复合物的晶体结构。除了 ATP 结合口袋外,在激酶 C 结构域中还观察到一个意想不到的第二个 PIK-108 结合位点。我们展示了 p110α 的整体构象变化,这与 nSH2 对激酶结构域的变构调节一致。这些发现拓宽了我们对不同类型突变在生长因子依赖性方面表现出的不同生物学结果的理解,并提出了一种与 p110α 和 p85α 突变的信号潜力相关的两层分类方案。