Department of Biochemistry, Beckman Center, B405, Stanford University, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20467-72. doi: 10.1073/pnas.1116066108. Epub 2011 Nov 28.
Cellular functions of proteins are strongly influenced by their interactions with other proteins. The frequency of protein interactions is a function of the local concentration of two proteins and their affinity for one another. When two proteins are tethered together, the link between them influences their effective concentrations and therefore the frequency of their interaction. Currently no methods exist to systematically vary the effective concentration within this intramolecular interaction. Here we outline a modular, genetically encoded linker, namely, an ER/K [genetically encoded polypeptide motif based on alternating sequence of approximately four glutamic acid (E) followed by approximately four arginine (R) or lysine (K) residues] single α-helix that can be used to regulate the frequency of interaction between two proteins, or between a protein and a peptide, one at each end. We exploit the wide range of interaction affinities between calmodulin and its binding peptides, combined with FRET to determine the effect of the ER/K α-helix in regulating protein interactions. We find that increasing the length of the ER/K α-helix reduces the on rate of the intramolecular interaction without significantly affecting the off rate, regardless of the affinity of the bimolecular interaction. We outline a genetically encoded approach to determine the dissociation constant for both moderate (micromolar K(d)) and strong (nanomolar K(d)) protein interactions. Our studies demonstrate the use of the ER/K α-helix to systematically engineer FRET biosensors that detect changes in concentration or affinity of interacting proteins, and modulate enzyme autoinhibition. Our findings are consistent with the ER/K α-helix as a worm-like chain with rare, stochastic breaks in the helix backbone that may account for the behavior of myosin VI stepping along actin.
蛋白质的细胞功能受其与其他蛋白质相互作用的强烈影响。蛋白质相互作用的频率是两种蛋白质局部浓度及其亲和力的函数。当两个蛋白质被连接在一起时,它们之间的连接会影响它们的有效浓度,从而影响它们相互作用的频率。目前,没有方法可以系统地改变这种分子内相互作用中的有效浓度。在这里,我们概述了一种模块化的、基因编码的接头,即 ER/K[基于大约四个谷氨酸(E)和大约四个精氨酸(R)或赖氨酸(K)残基交替序列的基因编码多肽基序]单α-螺旋,可用于调节两种蛋白质之间或一种蛋白质与一种肽之间的相互作用频率,肽位于两端。我们利用钙调蛋白与其结合肽之间广泛的相互作用亲和力,结合 FRET 来确定 ER/Kα-螺旋在调节蛋白质相互作用中的作用。我们发现,增加 ER/Kα-螺旋的长度会降低分子内相互作用的成键速率,而不会显著影响解键速率,无论双分子相互作用的亲和力如何。我们概述了一种基因编码方法来确定中等(微摩尔 K(d))和强(纳摩尔 K(d))蛋白相互作用的解离常数。我们的研究表明,使用 ER/Kα-螺旋可以系统地设计 FRET 生物传感器,以检测相互作用蛋白的浓度或亲和力变化,并调节酶的自动抑制。我们的发现与 ER/Kα-螺旋作为一种蠕虫状链一致,这种链在螺旋骨架中很少出现随机断裂,这可能解释了肌球蛋白 VI 沿着肌动蛋白的步进行为。