Spassov Alexander, Gredes Tomasz, Lehmann Christian, Gedrange Tomasz, Lucke Silke, Pavlovic Dragan, Kunert-Keil Christiane
Department of Orthodontics, Faculty of Medicine, University of Greifswald, Greifswald, Germany.
J Orofac Orthop. 2011 Nov;72(6):469-75. doi: 10.1007/s00056-011-0051-2. Epub 2011 Nov 30.
Orofacial muscles in mdx mice, a model of Duchenne muscular dystrophy (DMD), undergo muscle necrosis followed by muscle regeneration. The activity of myogenic regulatory factors (MRF) in muscles that regenerate may reveal specific changes. Little is known about the role of MRF, particularly their expression after muscle necrosis in the orofacial muscles of mdx mice and in DMD. Patients suffering from DMD present characteristic malocclusions in association with orofacial dysfunctions. Investigating the role of MRFs in mdx masticatory muscles may help to develop preventive and therapeutic strategies for DMD.
Using Western Blot analysis, we examined the protein expression of MRFs (myogenin and MyoD1) in masticatory muscles such as masseter, temporal, and tongue muscle and one hindlimb muscle, the soleus of control and mdx mice (n = 6-7). The mean optical density (MOD) of proteins was measured for quantification.
Myogenin and MyoD1 were detected in mdx and control mice. The amount of myogenin in masseter (MOD, mean ± standard error of the mean (SEM), control vs. mdx: 3.08 ± 0.67 vs. 1.83 ± 0.33), tongue (MOD control vs. mdx: 1.53 ± 0.22 vs. 1.41 ± 0.14), temporal (MOD control vs. mdx: 1.23 ± 0.16 vs. 1.43 ± 0.35), and soleus muscles (MOD, control vs. mdx: 1.95 ± 0.26 vs. 2.31 ± 0.42) did not differ between the mouse strains. MyoD1 amounts in mdx, similar to that of myogenin, remained unchanged when compared to control mice (MOD control vs. mdx: masseter 0.75 ± 0.09 vs. 0.86 ± 0.13; tongue 1.55 ± 0.25 vs. 1.41 ± 0.28; temporal 0.71 ± 0.10 vs. 0.73 ± 0.11; soleus 1.09 ± 0.26 vs. 1.03 ± 0.24).
The results indicate that protein expression of MyoD1 and myogenin in mdx mice does not differ from controls, suggesting a secondary role of MyoD1 and myogenin in the regeneration stage of mdx orofacial muscles.
杜氏肌营养不良症(DMD)模型mdx小鼠的口面部肌肉会经历肌肉坏死,随后进行肌肉再生。再生肌肉中肌源性调节因子(MRF)的活性可能会揭示特定变化。关于MRF的作用,尤其是它们在mdx小鼠口面部肌肉和DMD患者肌肉坏死后的表达,人们了解甚少。患有DMD的患者会出现与口面部功能障碍相关的特征性错牙合。研究MRF在mdx咀嚼肌中的作用可能有助于制定DMD的预防和治疗策略。
我们使用蛋白质免疫印迹分析,检测了对照小鼠和mdx小鼠(n = 6 - 7)咬肌、颞肌、舌肌等咀嚼肌以及一条后肢肌肉比目鱼肌中MRF(生肌调节因子和肌分化抗原1)的蛋白质表达。测量蛋白质的平均光密度(MOD)进行定量分析。
在mdx小鼠和对照小鼠中均检测到生肌调节因子和肌分化抗原1。咬肌(MOD,平均值±平均标准误差(SEM),对照小鼠 vs. mdx小鼠:3.08 ± 0.67 vs. 1.83 ± 0.33)、舌肌(MOD,对照小鼠 vs. mdx小鼠:1.53 ± 0.22 vs. 1.41 ± 0.14)、颞肌(MOD,对照小鼠 vs. mdx小鼠:1.23 ± 0.16 vs. 1.43 ± 0.35)和比目鱼肌(MOD,对照小鼠 vs. mdx小鼠:1.95 ± 0.26 vs. 2.31 ± 0.42)中生肌调节因子的含量在两种小鼠品系之间没有差异。与对照小鼠相比,mdx小鼠中肌分化抗原1的含量与生肌调节因子相似,没有变化(MOD,对照小鼠 vs. mdx小鼠:咬肌0.75 ± 0.09 vs. 0.86 ± 0.13;舌肌1.55 ± 0.25 vs. 1.41 ± 0.28;颞肌0.71 ± 0.10 vs. 0.73 ± 0.11;比目鱼肌1.09 ± 0.26 vs. 1.03 ± 0.24)。
结果表明,mdx小鼠中生肌调节因子和肌分化抗原1的蛋白质表达与对照小鼠没有差异,这表明生肌调节因子和肌分化抗原1在mdx口面部肌肉再生阶段起次要作用。