Suppr超能文献

一项血液病恶性肿瘤发热事件的前瞻性调查。

A prospective survey of febrile events in hematological malignancies.

机构信息

Istituto di Ematologia, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, I-00168, Roma, Italy.

U.O. Ematologia, Spedali Civili, Brescia, Italy.

出版信息

Ann Hematol. 2012 May;91(5):767-774. doi: 10.1007/s00277-011-1373-2. Epub 2011 Nov 29.

Abstract

The Hema e-Chart prospectively collected data on febrile events (FEs) in hematological malignancy patients (HMs). The aim of the study was to assess the number, causes and outcome of HM-related FEs. Data were collected in a computerized registry that systematically approached the study and the evolution of FEs developing in a cohort of adult HMs who were admitted to 19 hematology departments in Italy from March 2007 to December 2008. A total of 869 FEs in 3,197 patients with newly diagnosed HMs were recorded. Fever of unidentified origin (FUO) was observed in 386 cases (44.4%). The other causes of FE were identified as noninfectious in 48 cases (5.5%) and infectious in 435 cases (50.1%). Bacteria were the most common cause of infectious FEs (301 cases), followed by fungi (95 cases), and viruses (7 cases). Mixed agents were isolated in 32 episodes. The attributable mortality rate was 6.7% (58 FEs). No deaths were observed in viral infection or in the noninfectious groups, while 25 deaths were due to FUO, 16 to bacterial infections, 14 to fungal infections, and three to mixed infections. The Hema e-Chart provided a complete system for the epidemiological study of infectious complications in HMs.

摘要

Hema e-Chart 前瞻性地收集了血液恶性肿瘤患者(HM)发热事件(FE)的数据。本研究的目的是评估 HM 相关 FE 的数量、原因和结果。数据是在一个计算机化的登记处收集的,该登记处系统地研究了意大利 19 个血液学部门于 2007 年 3 月至 2008 年 12 月收治的一组成年 HM 患者中出现的 FE 的发展情况和演变。共记录了 3197 例新诊断 HM 患者中的 869 例 FE。386 例(44.4%)观察到不明原因发热(FUO)。其他 FE 原因分别为非感染性 48 例(5.5%)和感染性 435 例(50.1%)。细菌是引起感染性 FE 的最常见原因(301 例),其次是真菌(95 例)和病毒(7 例)。32 例中分离出混合剂。归因死亡率为 6.7%(58 例 FE)。病毒感染或非感染组未观察到死亡,而 25 例死亡归因于 FUO,16 例归因于细菌感染,14 例归因于真菌感染,3 例归因于混合感染。Hema e-Chart 为 HM 感染性并发症的流行病学研究提供了一个完整的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验