Suppr超能文献

非洲人群中的单体型变异和基因型推断。

Haplotype variation and genotype imputation in African populations.

机构信息

Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Genet Epidemiol. 2011 Dec;35(8):766-80. doi: 10.1002/gepi.20626.

Abstract

Sub-Saharan Africa has been identified as the part of the world with the greatest human genetic diversity. This high level of diversity causes difficulties for genome-wide association (GWA) studies in African populations-for example, by reducing the accuracy of genotype imputation in African populations compared to non-African populations. Here, we investigate haplotype variation and imputation in Africa, using 253 unrelated individuals from 15 Sub-Saharan African populations. We identify the populations that provide the greatest potential for serving as reference panels for imputing genotypes in the remaining groups. Considering reference panels comprising samples of recent African descent in Phase 3 of the HapMap Project, we identify mixtures of reference groups that produce the maximal imputation accuracy in each of the sampled populations. We find that optimal HapMap mixtures and maximal imputation accuracies identified in detailed tests of imputation procedures can instead be predicted by using simple summary statistics that measure relationships between the pattern of genetic variation in a target population and the patterns in potential reference panels. Our results provide an empirical basis for facilitating the selection of reference panels in GWA studies of diverse human populations, especially those of African ancestry.

摘要

撒哈拉以南非洲已被确定为世界上人类遗传多样性最大的地区。这种高度的多样性给非洲人群的全基因组关联(GWA)研究带来了困难——例如,与非非洲人群相比,它降低了非洲人群中基因型推断的准确性。在这里,我们使用来自 15 个撒哈拉以南非洲人群的 253 个无关个体来研究非洲的单倍型变异和推断。我们确定了最有潜力作为其余群体基因型推断参考面板的人群。考虑到 HapMap 项目第三阶段中具有近期非洲血统的样本组成的参考面板,我们确定了在每个抽样人群中产生最大推断准确性的参考组混合物。我们发现,在对推断程序进行详细测试中确定的最佳 HapMap 混合物和最大推断准确性,可以通过使用简单的汇总统计量来预测,这些统计量衡量目标人群中遗传变异模式与潜在参考面板模式之间的关系。我们的研究结果为促进不同人群,特别是具有非洲血统的人群的 GWA 研究中参考面板的选择提供了经验基础。

相似文献

1
Haplotype variation and genotype imputation in African populations.
Genet Epidemiol. 2011 Dec;35(8):766-80. doi: 10.1002/gepi.20626.
2
Genotype-imputation accuracy across worldwide human populations.
Am J Hum Genet. 2009 Feb;84(2):235-50. doi: 10.1016/j.ajhg.2009.01.013.
3
Genotype imputation performance of three reference panels using African ancestry individuals.
Hum Genet. 2018 Apr;137(4):281-292. doi: 10.1007/s00439-018-1881-4. Epub 2018 Apr 10.
5
Comprehensive evaluation of imputation performance in African Americans.
J Hum Genet. 2012 Jul;57(7):411-21. doi: 10.1038/jhg.2012.43. Epub 2012 May 31.
8
MaCH-admix: genotype imputation for admixed populations.
Genet Epidemiol. 2013 Jan;37(1):25-37. doi: 10.1002/gepi.21690. Epub 2012 Oct 16.
9
A generic coalescent-based framework for the selection of a reference panel for imputation.
Genet Epidemiol. 2010 Dec;34(8):773-82. doi: 10.1002/gepi.20505.
10
The African Genome Variation Project shapes medical genetics in Africa.
Nature. 2015 Jan 15;517(7534):327-32. doi: 10.1038/nature13997. Epub 2014 Dec 3.

引用本文的文献

3
A joint use of pooling and imputation for genotyping SNPs.
BMC Bioinformatics. 2022 Oct 13;23(1):421. doi: 10.1186/s12859-022-04974-7.
4
Individualized Medicine in Africa: Bringing the Practice Into the Realms of Population Heterogeneity.
Front Genet. 2022 Apr 14;13:853969. doi: 10.3389/fgene.2022.853969. eCollection 2022.
5
Human OMICs and Computational Biology Research in Africa: Current Challenges and Prospects.
OMICS. 2021 Apr;25(4):213-233. doi: 10.1089/omi.2021.0004. Epub 2021 Apr 1.
6
Mining whole genome sequence data to efficiently attribute individuals to source populations.
Sci Rep. 2020 Jul 22;10(1):12124. doi: 10.1038/s41598-020-68740-6.
7
Polygenic risk scores in psychiatry: Will they be useful for clinicians?
F1000Res. 2019 Jul 31;8. doi: 10.12688/f1000research.18491.1. eCollection 2019.
8
A genome scan for genes underlying adult body size differences between Central African hunter-gatherers and farmers.
Hum Genet. 2018 Jul;137(6-7):487-509. doi: 10.1007/s00439-018-1902-3. Epub 2018 Jul 14.
9
Weighted likelihood inference of genomic autozygosity patterns in dense genotype data.
BMC Genomics. 2017 Dec 1;18(1):928. doi: 10.1186/s12864-017-4312-3.

本文引用的文献

1
Hunter-gatherer genomic diversity suggests a southern African origin for modern humans.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5154-62. doi: 10.1073/pnas.1017511108. Epub 2011 Mar 7.
2
MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes.
Genet Epidemiol. 2010 Dec;34(8):816-34. doi: 10.1002/gepi.20533.
3
A generic coalescent-based framework for the selection of a reference panel for imputation.
Genet Epidemiol. 2010 Dec;34(8):773-82. doi: 10.1002/gepi.20505.
4
Inference of unexpected genetic relatedness among individuals in HapMap Phase III.
Am J Hum Genet. 2010 Oct 8;87(4):457-64. doi: 10.1016/j.ajhg.2010.08.014.
5
Integrating common and rare genetic variation in diverse human populations.
Nature. 2010 Sep 2;467(7311):52-8. doi: 10.1038/nature09298.
6
Colloquium paper: working toward a synthesis of archaeological, linguistic, and genetic data for inferring African population history.
Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2(Suppl 2):8931-8. doi: 10.1073/pnas.1002563107. Epub 2010 May 5.
7
Genome-wide association studies in diverse populations.
Nat Rev Genet. 2010 May;11(5):356-66. doi: 10.1038/nrg2760.
8
Methodological challenges of genome-wide association analysis in Africa.
Nat Rev Genet. 2010 Feb;11(2):149-60. doi: 10.1038/nrg2731.
9
Genome-wide patterns of population structure and admixture in West Africans and African Americans.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):786-91. doi: 10.1073/pnas.0909559107. Epub 2009 Dec 22.
10
Practical considerations for imputation of untyped markers in admixed populations.
Genet Epidemiol. 2010 Apr;34(3):258-65. doi: 10.1002/gepi.20457.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验