Suppr超能文献

混合人群中未分型标记的推断的实用考虑。

Practical considerations for imputation of untyped markers in admixed populations.

机构信息

Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-5635, USA.

出版信息

Genet Epidemiol. 2010 Apr;34(3):258-65. doi: 10.1002/gepi.20457.

Abstract

Imputation of genotypes for markers untyped in a study sample has become a standard approach to increase genome coverage in genome-wide association studies at practically zero cost. Most methods for imputing missing genotypes extend previously described algorithms for inferring haplotype phase. These algorithms generally fall into three classes based on the underlying model for estimating the conditional distribution of haplotype frequencies: a cluster-based model, a multinomial model, or a population genetics-based model. We compared BEAGLE, PLINK, and MACH, representing the three classes of models, respectively, with specific attention to measures of imputation success and selection of the reference panel for an admixed study sample of African Americans. Based on analysis of chromosome 22 and after calibration to a fixed level of 90% concordance between experimentally determined and imputed genotypes, MACH yielded the largest absolute number of successfully imputed markers and the largest gain in coverage of the variation captured by HapMap reference panels. Following the common practice of performing imputation once, the Yoruba in Ibadan, Nigeria (YRI) reference panel outperformed other HapMap reference panels, including (1) African ancestry from Southwest USA (ASW) data, (2) an unweighted combination of the Northern and Western Europe (CEU) and YRI data into a single reference panel, and (3) a combination of the CEU and YRI data into a single reference panel with weights matching estimates of admixture proportions. For our admixed study sample, the optimal strategy involved imputing twice with the HapMap CEU and YRI reference panels separately and then merging the data sets.

摘要

在研究样本中对未分型标记进行基因型推断已成为一种增加全基因组关联研究中基因组覆盖度的标准方法,几乎不需要任何成本。大多数用于推断缺失基因型的方法扩展了先前描述的推断单倍型相位的算法。这些算法通常基于估计单倍型频率条件分布的基础模型分为三类:基于聚类的模型、多项模型或基于群体遗传学的模型。我们比较了分别代表这三种模型的 BEAGLE、PLINK 和 MACH,特别关注了推断成功率和选择参考面板的措施,以适应非洲裔美国人的混合研究样本。基于对 22 号染色体的分析,并在与实验确定的基因型和推断的基因型之间 90%的一致性的固定水平校准后,MACH 产生了最多数量的成功推断标记和最多的 HapMap 参考面板捕获的变异覆盖度增益。在执行一次推断的常见实践之后,尼日利亚伊巴丹的约鲁巴人(YRI)参考面板优于其他 HapMap 参考面板,包括(1)来自美国西南部的非洲裔(ASW)数据,(2)将北欧和西欧(CEU)和 YRI 数据加权组合成一个单一的参考面板,以及(3)将 CEU 和 YRI 数据组合成一个参考面板,其权重与混合比例的估计值匹配。对于我们的混合研究样本,最佳策略涉及两次使用 HapMap CEU 和 YRI 参考面板进行推断,然后合并数据集。

相似文献

1
Practical considerations for imputation of untyped markers in admixed populations.
Genet Epidemiol. 2010 Apr;34(3):258-65. doi: 10.1002/gepi.20457.
3
Comprehensive evaluation of imputation performance in African Americans.
J Hum Genet. 2012 Jul;57(7):411-21. doi: 10.1038/jhg.2012.43. Epub 2012 May 31.
4
Assessment of genotype imputation performance using 1000 Genomes in African American studies.
PLoS One. 2012;7(11):e50610. doi: 10.1371/journal.pone.0050610. Epub 2012 Nov 30.
5
Genotype imputation for African Americans using data from HapMap phase II versus 1000 genomes projects.
Genet Epidemiol. 2012 Jul;36(5):508-16. doi: 10.1002/gepi.21647. Epub 2012 May 29.
6
Genotype imputation performance of three reference panels using African ancestry individuals.
Hum Genet. 2018 Apr;137(4):281-292. doi: 10.1007/s00439-018-1881-4. Epub 2018 Apr 10.
7
Impact of genetic similarity on imputation accuracy.
BMC Genet. 2015 Jul 22;16:90. doi: 10.1186/s12863-015-0248-2.
9
MaCH-admix: genotype imputation for admixed populations.
Genet Epidemiol. 2013 Jan;37(1):25-37. doi: 10.1002/gepi.21690. Epub 2012 Oct 16.
10
Accurate haplotype imputation with individualized ancestry-adjusted reference panels.
Genomics. 2018 Sep;110(5):329-335. doi: 10.1016/j.ygeno.2017.11.005. Epub 2017 Dec 2.

引用本文的文献

1
A Bioinformatics Crash Course for Interpreting Genomics Data.
Chest. 2020 Jul;158(1S):S113-S123. doi: 10.1016/j.chest.2020.03.004.
2
Genotype imputation performance of three reference panels using African ancestry individuals.
Hum Genet. 2018 Apr;137(4):281-292. doi: 10.1007/s00439-018-1881-4. Epub 2018 Apr 10.
6
When Does Choice of Accuracy Measure Alter Imputation Accuracy Assessments?
PLoS One. 2015 Oct 12;10(10):e0137601. doi: 10.1371/journal.pone.0137601. eCollection 2015.
7
Choosing Subsamples for Sequencing Studies by Minimizing the Average Distance to the Closest Leaf.
Genetics. 2015 Oct;201(2):499-511. doi: 10.1534/genetics.115.176909. Epub 2015 Aug 24.
8
Windfalls and pitfalls: Applications of population genetics to the search for disease genes.
Evol Med Public Health. 2013 Jan;2013(1):254-72. doi: 10.1093/emph/eot021. Epub 2013 Nov 6.
9
Additive genetic variation in schizophrenia risk is shared by populations of African and European descent.
Am J Hum Genet. 2013 Sep 5;93(3):463-70. doi: 10.1016/j.ajhg.2013.07.007. Epub 2013 Aug 15.
10
Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy.
Hum Genet. 2013 May;132(5):509-22. doi: 10.1007/s00439-013-1266-7. Epub 2013 Jan 22.

本文引用的文献

1
A genome-wide association study of hypertension and blood pressure in African Americans.
PLoS Genet. 2009 Jul;5(7):e1000564. doi: 10.1371/journal.pgen.1000564. Epub 2009 Jul 17.
2
Genotype-imputation accuracy across worldwide human populations.
Am J Hum Genet. 2009 Feb;84(2):235-50. doi: 10.1016/j.ajhg.2009.01.013.
3
Use of weighted reference panels based on empirical estimates of ancestry for capturing untyped variation.
Hum Genet. 2009 Apr;125(3):295-303. doi: 10.1007/s00439-009-0627-8. Epub 2009 Jan 28.
4
A comprehensive evaluation of SNP genotype imputation.
Hum Genet. 2009 Mar;125(2):163-71. doi: 10.1007/s00439-008-0606-5. Epub 2008 Dec 17.
5
Imputation of missing genotypes: an empirical evaluation of IMPUTE.
BMC Genet. 2008 Dec 12;9:85. doi: 10.1186/1471-2156-9-85.
6
Practical issues in imputation-based association mapping.
PLoS Genet. 2008 Dec;4(12):e1000279. doi: 10.1371/journal.pgen.1000279. Epub 2008 Dec 5.
7
Analyses and comparison of accuracy of different genotype imputation methods.
PLoS One. 2008;3(10):e3551. doi: 10.1371/journal.pone.0003551. Epub 2008 Oct 29.
8
Comparing algorithms for genotype imputation.
Am J Hum Genet. 2008 Oct;83(4):535-9; author reply 539-40. doi: 10.1016/j.ajhg.2008.09.007.
9
Missing data imputation and haplotype phase inference for genome-wide association studies.
Hum Genet. 2008 Dec;124(5):439-50. doi: 10.1007/s00439-008-0568-7. Epub 2008 Oct 11.
10
Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs.
Nat Genet. 2008 Oct;40(10):1253-60. doi: 10.1038/ng.237. Epub 2008 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验