Suppr超能文献

由于蜜蜂对幼虫进行体温调节,导致朗氏蜂箱内产生了气流和通风。

Flow currents and ventilation in Langstroth beehives due to brood thermoregulation efforts of honeybees.

机构信息

Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada.

出版信息

J Theor Biol. 2012 Feb 21;295:168-93. doi: 10.1016/j.jtbi.2011.11.007. Epub 2011 Nov 25.

Abstract

Beekeepers universally agree that ensuring sufficient ventilation is vital for sustaining a thriving, healthy honeybee colony. Despite this fact, surprisingly little is known about the ventilation and flow patterns in bee hives. We take a first step towards developing a model-based approach that uses computational fluid dynamics to simulate natural ventilation flow inside a standard Langstroth beehive. A 3-D model of a Langstroth beehive with one brood chamber and one honey super was constructed and inside it the honeybee colony was distributed among different clusters each occupying the different bee-spaces between frames in the brood chamber. For the purpose of modeling, each honeybee cluster was treated as an air-saturated porous medium with constant porosity. Heat and mass transfer interactions of the honeybees with the air, the outcome of metabolism, were captured in the porous medium model as source and sink terms appearing in the governing equations of fluid dynamics. The temperature of the brood that results from the thermoregulation efforts of the colony is applied as a boundary condition for the governing equations. The governing equations for heat, mass transport and fluid flow were solved using Fluent(©), a commercially available CFD program. The results from the simulations indicate that (a) both heat and mass transfer resulting from honeybee metabolism play a vital role in determining the structure of the flow inside the beehive and mass transfer cannot be neglected, (b) at low ambient temperatures, the nonuniform temperature profile on comb surfaces that results from brood incubation enhances flow through the honeybee cluster which removes much of the carbon-dioxide produced by the cluster resulting in lower carbon-dioxide concentration next to the brood, (c) increasing ambient (outside) air temperature causes ventilation flow rate to drop resulting in weaker flow inside the beehive. Flow visualization indicates that at low ambient air temperatures the flow inside the beehive has an interesting 3-D structure with the presence of large recirculating vortices occupying the space between honey super frames above the honeybee clusters in the brood chamber and the structure and strength of the flow inside and around the honeybee clusters changes as we increase the ambient air temperature outside the beehive.

摘要

养蜂人普遍认为,确保充足的通风对于维持一个繁荣、健康的蜜蜂群体至关重要。尽管如此,人们对蜂箱内的通风和流动模式却知之甚少。我们朝着开发一种基于模型的方法迈出了第一步,该方法使用计算流体动力学来模拟标准朗斯特罗思蜂箱内的自然通风流动。构建了一个具有一个育雏室和一个蜂蜜超级的朗斯特罗思蜂箱的 3D 模型,并在其中将蜜蜂群体分布在不同的集群中,每个集群占据育雏室中框架之间不同的蜜蜂空间。为了建模,每个蜜蜂集群都被视为具有恒定孔隙率的饱和多孔介质。蜜蜂与空气之间的热和质量转移相互作用,代谢的结果,作为源和汇项出现在流体动力学的控制方程中,出现在多孔介质模型中。由于群体的体温调节作用,育雏室的温度被应用于控制方程的边界条件。使用商业 CFD 程序 Fluent(©)求解了热、质量传输和流体流动的控制方程。模拟结果表明:(a)蜜蜂代谢产生的热和质量传递对于确定蜂箱内流动结构至关重要,不能忽略质量传递;(b)在环境温度较低的情况下,由于育雏导致的蜂巢表面非均匀温度分布会增强通过蜜蜂群体的流动,从而去除了群体产生的大部分二氧化碳,导致靠近育雏的二氧化碳浓度降低;(c)环境(外部)空气温度升高会导致通风率下降,从而导致蜂箱内的流动减弱。流动可视化表明,在环境空气温度较低的情况下,蜂箱内的流动具有有趣的 3D 结构,大的循环涡旋存在于育雏室中蜂蜜超级框架之间的空间中,并且随着环境空气温度的升高,蜜蜂群体内部和周围的流动结构和强度会发生变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验