Suppr超能文献

用于胶质母细胞瘤 DCE-T1 研究的模型选择。

Model selection for DCE-T1 studies in glioblastoma.

机构信息

Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202, USA.

出版信息

Magn Reson Med. 2012 Jul;68(1):241-51. doi: 10.1002/mrm.23211. Epub 2011 Nov 29.

Abstract

Dynamic contrast enhanced T(1)-weighted MRI using the contrast agent gadopentetate dimeglumine (Gd-DTPA) was performed on 10 patients with glioblastoma. Nested models with as many as three parameters were used to estimate plasma volume or plasma volume and forward vascular transfer constant (K(trans)) and the reverse vascular transfer constant (k(ep)). These constituted models 1, 2, and 3, respectively. Model 1 predominated in normal nonleaky brain tissue, showing little or no leakage of contrast agent. Model 3 predominated in regions associated with aggressive portions of the tumor, and model 2 bordered model 3 regions, showing leakage at reduced rates. In the patient sample, v(p) was about four times that of white matter in the enhancing part of the tumor. K(trans) varied by a factor of 10 between the model 2 (1.9 ↔ 10(-3) min(-1)) and model 3 regions (1.9 ↔ 10(-2) min(-1)). The mean calculated interstitial space (model 3) was 5.5%. In model 3 regions, excellent curve fits were obtained to summarize concentration-time data (mean R(2) = 0.99). We conclude that the three parameters of the standard model are sufficient to fit dynamic contrast enhanced T(1) data in glioblastoma under the conditions of the experiment.

摘要

使用造影剂钆喷替酸葡甲胺(Gd-DTPA)对 10 例胶质母细胞瘤患者进行了动态对比增强 T1 加权 MRI 检查。使用嵌套模型,最多使用三个参数来估计血浆体积或血浆体积和前向血管转移常数(K(trans))和反向血管转移常数(k(ep))。这些分别构成模型 1、2 和 3。模型 1 在正常非渗漏性脑组织中占主导地位,显示出很少或没有造影剂渗漏。模型 3 在与肿瘤侵袭性部分相关的区域占主导地位,而模型 2 与模型 3 区域相邻,以较低的速率显示渗漏。在患者样本中,v(p)约为肿瘤增强部分白质的四倍。K(trans)在模型 2(1.9↔10(-3)min(-1))和模型 3 区域(1.9↔10(-2)min(-1))之间相差 10 倍。计算出的平均间质空间(模型 3)为 5.5%。在模型 3 区域,对浓度-时间数据进行了很好的曲线拟合(平均 R(2)=0.99)。我们得出结论,在实验条件下,标准模型的三个参数足以拟合胶质母细胞瘤的动态对比增强 T1 数据。

相似文献

1
Model selection for DCE-T1 studies in glioblastoma.
Magn Reson Med. 2012 Jul;68(1):241-51. doi: 10.1002/mrm.23211. Epub 2011 Nov 29.
2
GPU-accelerated nonparametric kinetic analysis of DCE-MRI data from glioblastoma patients treated with bevacizumab.
Magn Reson Imaging. 2013 May;31(4):618-23. doi: 10.1016/j.mri.2012.09.007. Epub 2012 Nov 30.
3
Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters.
AJR Am J Roentgenol. 2007 Oct;189(4):849. doi: 10.2214/AJR.06.1329.
6
10
Conversion of arterial input functions for dual pharmacokinetic modeling using Gd-DTPA/MRI and 18F-FDG/PET.
Magn Reson Med. 2013 Mar 1;69(3):781-92. doi: 10.1002/mrm.24318. Epub 2012 May 8.

引用本文的文献

6
Persistent Peri-Ablation Blood-Brain Barrier Opening After Laser Interstitial Thermal Therapy for Brain Tumors.
Cureus. 2023 Apr 10;15(4):e37397. doi: 10.7759/cureus.37397. eCollection 2023 Apr.
7
Contributions of blood-brain barrier imaging to neurovascular unit pathophysiology of Alzheimer's disease and related dementias.
Front Aging Neurosci. 2023 Feb 9;15:1111448. doi: 10.3389/fnagi.2023.1111448. eCollection 2023.
8
Multi-parametric MRI for radiotherapy simulation.
Med Phys. 2023 Aug;50(8):5273-5293. doi: 10.1002/mp.16256. Epub 2023 Feb 9.
9
Repeatability of tumor perfusion kinetics from dynamic contrast-enhanced MRI in glioblastoma.
Neurooncol Adv. 2021 Nov 22;3(1):vdab174. doi: 10.1093/noajnl/vdab174. eCollection 2021 Jan-Dec.

本文引用的文献

1
Temporal resolution and SNR requirements for accurate DCE-MRI data analysis using the AATH model.
Magn Reson Med. 2010 Dec;64(6):1772-80. doi: 10.1002/mrm.22573. Epub 2010 Aug 16.
2
Dynamic-contrast-enhanced-MRI with extravasating contrast reagent: rat cerebral glioma blood volume determination.
J Magn Reson. 2010 Oct;206(2):190-9. doi: 10.1016/j.jmr.2010.07.004. Epub 2010 Jul 31.
5
Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17937-42. doi: 10.1073/pnas.0804224105. Epub 2008 Nov 13.
6
The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17943-8. doi: 10.1073/pnas.0711226105. Epub 2008 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验