Suppr超能文献

遥感数据空间分辨率对估算城市不透水面的影响。

Effects of spatial resolution of remotely sensed data on estimating urban impervious surfaces.

机构信息

State Key Laboratory of Urban and Region Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

出版信息

J Environ Sci (China). 2011;23(8):1375-83. doi: 10.1016/s1001-0742(10)60541-4.

Abstract

Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure the impacts of urbanization on surface runoff, water quality, air quality, biodiversity and microclimate. Therefore, accurate estimation of impervious surfaces is critical for urban environmental monitoring, land management, decision-making and urban planning. Many approaches have been developed to estimate surface imperviousness, using remotely sensed data with various spatial resolutions. However, few studies, have investigated the effects of spatial resolution on estimating surface imperviousness. We compare medium-resolution Landsat data with high-resolution SPOT images to quantify the imperviousness in Beijing, China. The results indicated that the overall 91% accuracy of estimates of imperviousness based on TM data was considerably higher than the 81% accuracy of the SPOT data. The higher resolution SPOT data did not always predict the imperviousness of the land better than the TM data. At the whole city level, the TM data better predicts the percentage cover of impervious surfaces. At the sub-city level, however, the ring belts from the central core to the urban-rural peripheral, the SPOT data may better predict the imperviousness. These results highlighted the need to combine multiple resolution data to quantify the percentage of imperviousness, as higher resolution data do not necessarily lead to more accurate estimates. The methodology and results in this study can be utilized to identify the most suitable remote sensing data to quickly and efficiently extract the pattern of the impervious land, which could provide the base for further study on many related urban environmental problems.

摘要

不透水面是城市化的结果,可以在土地开发的每个阶段明确量化、管理和控制。它是一个非常有用的环境指标,可用于衡量城市化对地表径流、水质、空气质量、生物多样性和小气候的影响。因此,准确估计不透水面对于城市环境监测、土地管理、决策和城市规划至关重要。已经开发了许多方法来使用具有不同空间分辨率的遥感数据来估计表面的不透水性。然而,很少有研究调查空间分辨率对估计表面不透水性的影响。我们使用中等分辨率的 Landsat 数据和高分辨率的 SPOT 图像来定量估计中国北京的不透水面。结果表明,基于 TM 数据的不透水估计的整体 91%准确率明显高于 SPOT 数据的 81%准确率。较高分辨率的 SPOT 数据并不总是比 TM 数据更好地预测土地的不透水性。在整个城市层面,TM 数据更好地预测了不透水面的覆盖率。然而,在次城市层面,从市中心核心到城乡周边的环形带,SPOT 数据可能更好地预测了不透水性。这些结果强调了需要结合多种分辨率数据来量化不透水面的百分比,因为较高分辨率的数据不一定会导致更准确的估计。本研究中的方法和结果可用于确定最合适的遥感数据,以快速有效地提取不透水面的模式,这可为进一步研究许多相关的城市环境问题提供基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验