Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, CEP 13083-859, Campinas, SP, Brazil.
J Chem Phys. 2011 Nov 28;135(20):204508. doi: 10.1063/1.3663387.
We investigate the pressure effects on the transitions between the disordered phases in supercooled liquid silicon through Monte Carlo simulations and efficient methods to compute free energies. Our calculations, using an environment dependent interatomic potential for Si, indicate that at zero pressure the liquid-liquid phase transition, between the high density liquid and the low density liquid, occurs at a temperature 325K below melting. We found that the liquid-liquid transition temperature decreases with increasing pressure, following the liquid-solid coexistence curve. As pressure increases, the liquid-liquid coexistence curve approaches the region where the glass transition between the low density liquid and the low density amorphous takes place. Above 5 GPa, our calculations show that the liquid-liquid transition is suppressed by the glassy dynamics of the system. We also found that above 5 GPa, the glass transition temperature is lower than that at lower pressures, suggesting that under these conditions the glass transition occurs between the high density liquid and the high density amorphous.
我们通过蒙特卡罗模拟和有效的自由能计算方法研究了过冷液体硅中无序相转变对压力的影响。我们的计算使用了一个与 Si 环境相关的原子间势能,结果表明在零压力下,高密度液体和低密度液体之间的液-液相转变发生在熔点以下 325K 的温度。我们发现,液-液转变温度随着压力的增加而降低,遵循液-固共存曲线。随着压力的增加,液-液共存曲线接近低密度液体和低密度非晶态之间的玻璃化转变区域。在 5GPa 以上,我们的计算表明,系统的玻璃态动力学抑制了液-液转变。我们还发现,在 5GPa 以上,玻璃化转变温度低于较低压力下的温度,这表明在这些条件下,玻璃化转变发生在高密度液体和高密度非晶态之间。