Department of Chemical and Materials Engineering, California State University, Pomona, California 91768, USA.
J Chem Phys. 2011 Nov 28;135(20):204706. doi: 10.1063/1.3663221.
The third-order Ornstein-Zernike equation (OZ3) is used in the construction of a bridge functional that improves over conventional liquid-theory closures (for example, the hypernetted chain or the Percus-Yevick equations). The OZ3 connects the triplet direct correlation C((3)) to the triplet total correlation h((3)). By invoking the convolution approximation of Jackson and Feenberg, we are able to express the third-order bridge function B(3) as a functional of the indirect correlation γ. The resulting expression is generalized to higher-order bridge terms. This new closure is tested on the adsorption of Lennard-Jones fluid on planar hard surfaces by calculating the density profiles and comparing with Monte Carlo simulations. Particular attention is paid to the cases where molecular depletion on the substrate is evident. The results prove to be highly accurate and improve over conventional closures.
三阶奥恩斯坦-泽尔尼克方程(OZ3)用于构建桥函数,该函数改进了传统的液体理论封闭(例如,超网链或 Percus-Yevick 方程)。OZ3 将三对直接相关 C((3))与三对总相关 h((3))联系起来。通过调用杰克逊和费恩伯格的卷积近似,我们能够将三阶桥函数 B(3)表示为间接相关 γ 的泛函。所得表达式推广到更高阶的桥项。通过计算密度分布并与蒙特卡罗模拟进行比较,我们对 Lennard-Jones 流体在平面硬表面上的吸附进行了新封闭的测试。特别注意分子在基底上明显耗尽的情况。结果证明该方法非常准确,并优于传统封闭。