Stutman D, Finkenthal M
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Rev Sci Instrum. 2011 Nov;82(11):113508. doi: 10.1063/1.3660808.
High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer.
在高能量密度实验室等离子体(HEDLP)实验中,由于能够穿透高于固体密度等离子体的探针稀缺,高分辨率密度诊断变得困难。硬X射线是用于此类高密度等离子体的一种可能的探针。我们研究了将最近开发用于医学成像的X射线方法——利用塔尔博特-劳干涉仪的差分相衬成像——应用于HEDLP实验中电子密度诊断和小尺度流体动力学不稳定性诊断的可能性。塔尔博特方法使用微周期光栅来测量X射线透过物体的折射和超小角度散射,并且由于其能够与非相干和多色X射线源(如用于HEDLP射线照相的激光驱动背光源)配合工作,因此对HEDLP诊断具有吸引力。我们的论文研究了塔尔博特方法用于HEDLP诊断的潜力、其对HEDLP环境的适应性以及使用微周期镜对高X射线能量的扩展。分析通过使用实验室塔尔博特干涉仪获得的实验结果进行说明。