Suppr超能文献

美国玉米带排水和地下水硝酸盐损失的可验证代谢模型。

Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA.

机构信息

U.S. Geological Survey, 413 National Center, Reston, Virginia 20192, United States.

出版信息

Environ Sci Technol. 2012 Jan 17;46(2):901-8. doi: 10.1021/es202875e. Epub 2011 Dec 22.

Abstract

Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R(2) = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson's r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams.

摘要

在不饱和带中,硝酸盐淋失对地下水构成威胁,而排水渠中的硝酸盐则直接输送到溪流中。我们开发了由人工神经网络组成的代谢模型 (MM),以简化和扩大美国玉米带中通过排水和淋失预测硝酸盐损失的机制命运和运输模型。这两个最终的 MM 分别预测了浅层地下的硝酸盐浓度和通量。由于每个 MM 都考虑了排水渠和淋失,因此它们代表了一种评估脆弱性的综合方法。MM 使用了现成的数据,包括农场肥料氮 (N)、天气数据和土壤特性作为输入;因此,它们非常适合区域外推。MM 有效地将基础机制模型(根区水质模型)的输出与输入相关联(硝酸盐浓度 MM 的 R(2) = 0.986)。预测的硝酸盐浓度与最近补给的地下水的 38 个样本中的实测硝酸盐进行了比较,Pearson r 为 0.466(p = 0.003)。预测的硝酸盐浓度通常高于地下水测量的浓度,这可能是由于现代补给到达井筛的时间滞后、地下水的反硝化作用或排水渠对补给的截留。在定性比较中,预测的硝酸盐浓度也与先前预测溪流中总氮的回归模型的结果相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验