Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America.
PLoS One. 2011;6(11):e27095. doi: 10.1371/journal.pone.0027095. Epub 2011 Nov 23.
Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.
双眼视觉需要精细控制眼球运动,以使重叠的视野在视觉皮层中融合,而每只眼睛都由 6 条眼外肌(EOM)控制。EOM 疾病是导致症状性视力丧失的重要原因。重要的是,EOM 是具有独特基因表达谱和易患神经肌肉疾病的专门骨骼肌。我们旨在研究和描述成年斑马鱼眼外肌(EOM)的解剖结构,以便与人类 EOM 解剖结构进行比较,并促进将斑马鱼用作 EOM 研究的模型。我们使用微分干涉对比(DIC)、荧光显微镜和精确切片技术,评估了斑马鱼 EOM 起源、肌肉行程和眼球插入的解剖结构。免疫荧光用于鉴定肌腱、基底膜和神经肌肉接头(NMJ)的成分,并分析肌纤维特征。我们发现,成年斑马鱼 EOM 在眼球上的插入与人类 EOM 的组织平行,包括特定 EOM 插入彼此之间的接近度。然而,EOM 起源的分析揭示了人类和斑马鱼之间的重要差异,例如,两条斜肌的共同颅侧起源和外直肌的尾侧起源。血栓素 4 标记了高度神经支配的 EOM 肌腱区域,而层粘连蛋白标记了基底膜,从而可以评估肌纤维的大小和分布。NMJ 似乎包括斑块型和结节型突触,而 EOM 中的 NMJ 密度远高于躯体肌肉。总之,斑马鱼和人类的 EOM 解剖结构通常是同源的,支持使用斑马鱼来研究 EOM 生物学。然而,存在解剖差异,揭示了不同的进化压力。
PLoS One. 2011-11-23
Invest Ophthalmol Vis Sci. 2024-5-1
Invest Ophthalmol Vis Sci. 2007-8
Ophthalmic Res. 2009-12-31
Invest Ophthalmol Vis Sci. 2011-7-1
Invest Ophthalmol Vis Sci. 2001-1
Invest Ophthalmol Vis Sci. 2010-4-14
Invest Ophthalmol Vis Sci. 2025-4-1
Int J Exp Pathol. 2024-10
Transl Vis Sci Technol. 2020-9-1
Matrix Biol. 2017-11-11
J Comp Neurol. 2017-1-1
Invest Ophthalmol Vis Sci. 2015-7
J Orthop Res. 2010-3
Invest Ophthalmol Vis Sci. 2007-8
Invest Ophthalmol Vis Sci. 2005-7
Invest Ophthalmol Vis Sci. 2004-12
Invest Ophthalmol Vis Sci. 2004-9
J Neuropathol Exp Neurol. 1962-7
J Physiol. 1960-10
Proc Natl Acad Sci U S A. 2001-10-9