Suppr超能文献

心脏 L 型钙通道活性降低可导致小鼠心肌肥厚和心力衰竭。

Decreased cardiac L-type Ca²⁺ channel activity induces hypertrophy and heart failure in mice.

机构信息

Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229, USA.

出版信息

J Clin Invest. 2012 Jan;122(1):280-90. doi: 10.1172/JCI58227. Epub 2011 Dec 1.

Abstract

Antagonists of L-type Ca²⁺ channels (LTCCs) have been used to treat human cardiovascular diseases for decades. However, these inhibitors can have untoward effects in patients with heart failure, and their overall therapeutic profile remains nebulous given differential effects in the vasculature when compared with those in cardiomyocytes. To investigate this issue, we examined mice heterozygous for the gene encoding the pore-forming subunit of LTCC (calcium channel, voltage-dependent, L type, α1C subunit [Cacna1c mice; referred to herein as α1C⁻/⁺ mice]) and mice in which this gene was loxP targeted to achieve graded heart-specific gene deletion (termed herein α1C-loxP mice). Adult cardiomyocytes from the hearts of α1C⁻/⁺ mice at 10 weeks of age showed a decrease in LTCC current and a modest decrease in cardiac function, which we initially hypothesized would be cardioprotective. However, α1C⁻/⁺ mice subjected to pressure overload stimulation, isoproterenol infusion, and swimming showed greater cardiac hypertrophy, greater reductions in ventricular performance, and greater ventricular dilation than α1C⁺/⁺ controls. The same detrimental effects were observed in α1C-loxP animals with a cardiomyocyte-specific deletion of one allele. More severe reductions in α1C protein levels with combinatorial deleted alleles produced spontaneous cardiac hypertrophy before 3 months of age, with early adulthood lethality. Mechanistically, our data suggest that a reduction in LTCC current leads to neuroendocrine stress, with sensitized and leaky sarcoplasmic reticulum Ca²⁺ release as a compensatory mechanism to preserve contractility. This state results in calcineurin/nuclear factor of activated T cells signaling that promotes hypertrophy and disease.

摘要

L 型钙通道 (LTCC) 拮抗剂已被用于治疗人类心血管疾病数十年。然而,这些抑制剂在心力衰竭患者中可能会产生不良影响,并且由于与心肌细胞相比,它们在血管中的作用不同,其整体治疗效果仍然不明确。为了研究这个问题,我们研究了钙通道电压依赖性 L 型 α1C 亚基(Cacna1c 基因)杂合子(钙通道,电压依赖性,L 型,α1C 亚基[Cacna1c 小鼠;本文中称为 α1C⁻/⁺小鼠)和该基因被 loxP 靶向以实现心脏特异性基因缺失(本文中称为 α1C-loxP 小鼠)的小鼠。10 周龄 α1C⁻/⁺ 小鼠心脏的成年心肌细胞显示 LTCC 电流减少和心脏功能略有下降,我们最初假设这将具有心脏保护作用。然而,α1C⁻/⁺ 小鼠在受到压力超负荷刺激、异丙肾上腺素输注和游泳刺激时,表现出更大的心脏肥大、心室功能降低更大、心室扩张更大,与 α1C⁺/⁺ 对照相比。在具有心肌细胞特异性缺失一个等位基因的 α1C-loxP 动物中观察到相同的有害作用。由于组合缺失等位基因导致的 α1C 蛋白水平的更严重降低导致自发性心脏肥大,发生在 3 个月龄之前,并在成年早期导致死亡。从机制上讲,我们的数据表明 LTCC 电流的减少导致神经内分泌应激,作为一种代偿机制,肌浆网 Ca²⁺释放变得敏感和渗漏,以维持收缩性。这种状态导致钙调神经磷酸酶/激活 T 细胞核因子信号转导,促进肥大和疾病。

相似文献

1
Decreased cardiac L-type Ca²⁺ channel activity induces hypertrophy and heart failure in mice.
J Clin Invest. 2012 Jan;122(1):280-90. doi: 10.1172/JCI58227. Epub 2011 Dec 1.
2
NFATc4 and myocardin synergistically up-regulate the expression of LTCC α1C in ET-1-induced cardiomyocyte hypertrophy.
Life Sci. 2016 Jun 15;155:11-20. doi: 10.1016/j.lfs.2016.05.007. Epub 2016 May 4.
3
Loss of β-adrenergic-stimulated phosphorylation of CaV1.2 channels on Ser1700 leads to heart failure.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7976-E7985. doi: 10.1073/pnas.1617116113. Epub 2016 Nov 18.
4
Accelerated development of pressure overload-induced cardiac hypertrophy and dysfunction in an RyR2-R176Q knockin mouse model.
Hypertension. 2010 Apr;55(4):932-8. doi: 10.1161/HYPERTENSIONAHA.109.146449. Epub 2010 Feb 15.
6
Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
Circ Res. 2008 Oct 10;103(8):891-9. doi: 10.1161/CIRCRESAHA.108.175141. Epub 2008 Sep 5.
7
Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.
Circulation. 2015 Jun 16;131(24):2131-42. doi: 10.1161/CIRCULATIONAHA.114.013537. Epub 2015 Apr 17.
8
Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling.
J Mol Cell Cardiol. 2012 Nov;53(5):657-67. doi: 10.1016/j.yjmcc.2012.08.005. Epub 2012 Aug 21.
9
K(ATP) channel gain-of-function leads to increased myocardial L-type Ca(2+) current and contractility in Cantu syndrome.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6773-8. doi: 10.1073/pnas.1606465113. Epub 2016 May 31.
10
The IP3 receptor regulates cardiac hypertrophy in response to select stimuli.
Circ Res. 2010 Sep 3;107(5):659-66. doi: 10.1161/CIRCRESAHA.110.220038. Epub 2010 Jul 8.

引用本文的文献

2
Cardiovascular inhalation for targeted drug delivery in cardiac disease.
Heart Fail Rev. 2025 May 23. doi: 10.1007/s10741-025-10527-w.
7
Myocardial Calcium Handling in Type 2 Diabetes: A Novel Therapeutic Target.
J Cardiovasc Dev Dis. 2023 Dec 30;11(1):12. doi: 10.3390/jcdd11010012.
8
Understanding the Role of Galectin-1 in Heart Failure: A Comprehensive Narrative Review.
Curr Cardiol Rev. 2024 Jan 8;20(1). doi: 10.2174/011573403X274886231227111902.
10
Novel Roles for the Transcriptional Repressor E4BP4 in Both Cardiac Physiology and Pathophysiology.
JACC Basic Transl Sci. 2023 Jun 14;8(9):1141-1156. doi: 10.1016/j.jacbts.2023.03.016. eCollection 2023 Sep.

本文引用的文献

1
Robust L-type calcium current expression following heterozygous knockout of the Cav1.2 gene in adult mouse heart.
J Physiol. 2011 Jul 1;589(Pt 13):3275-88. doi: 10.1113/jphysiol.2011.210237. Epub 2011 Apr 26.
2
Cardiac L-type calcium channel (Cav1.2) associates with gamma subunits.
FASEB J. 2011 Mar;25(3):928-36. doi: 10.1096/fj.10-172353. Epub 2010 Dec 2.
3
Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy.
J Mol Cell Cardiol. 2011 Mar;50(3):460-70. doi: 10.1016/j.yjmcc.2010.11.012. Epub 2010 Nov 25.
4
Myocardial function with reduced expression of the sodium-calcium exchanger.
J Card Fail. 2010 Sep;16(9):786-96. doi: 10.1016/j.cardfail.2010.03.012. Epub 2010 May 14.
5
Homeostatic switch in hebbian plasticity and fear learning after sustained loss of Cav1.2 calcium channels.
J Neurosci. 2010 Jun 23;30(25):8367-75. doi: 10.1523/JNEUROSCI.4164-08.2010.
6
Accelerated development of pressure overload-induced cardiac hypertrophy and dysfunction in an RyR2-R176Q knockin mouse model.
Hypertension. 2010 Apr;55(4):932-8. doi: 10.1161/HYPERTENSIONAHA.109.146449. Epub 2010 Feb 15.
7
alpha1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice.
J Clin Invest. 2009 Dec;119(12):3787-96. doi: 10.1172/JCI39724. Epub 2009 Nov 16.
8
Beta-adrenergic receptor signaling in the heart: role of CaMKII.
J Mol Cell Cardiol. 2010 Feb;48(2):322-30. doi: 10.1016/j.yjmcc.2009.10.016. Epub 2009 Oct 31.
9
L-type Ca(2+) current in ventricular cardiomyocytes.
J Mol Cell Cardiol. 2010 Jan;48(1):26-36. doi: 10.1016/j.yjmcc.2009.07.026. Epub 2009 Aug 4.
10
Cardiac ryanodine receptor phosphorylation by CaM Kinase II: keeping the balance right.
Front Biosci (Landmark Ed). 2009 Jun 1;14(13):5134-56. doi: 10.2741/3591.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验