Institute of Organic Chemistry and Center of Biomolecular Research (BMWZ), Schneiderberg 1B, Leibniz University Hannover, D-30167 Hannover, Germany.
J Am Chem Soc. 2012 Jan 25;134(3):1673-9. doi: 10.1021/ja2087147. Epub 2012 Jan 10.
The amide synthase of the geldanamycin producer, Streptomyces hygroscopicus, shows a broader chemoselectivity than the corresponding amide synthase present in Actinosynnema pretiosum, the producer of the highly cytotoxic ansamycin antibiotics, the ansamitocins. This was demonstrated when blocked mutants of both strains incapable of biosynthesizing 3-amino-5-hydroxybenzoic acid (AHBA), the polyketide synthase starter unit of both natural products, were supplemented with 3-amino-5-hydroxymethylbenzoic acid instead. Unlike the ansamitocin producer A. pretiosum, S. hygroscopicus processed this modified starter unit not only to the expected 19-membered macrolactams but also to ring enlarged 20-membered macrolactones. The former mutaproducts revealed the sequence of transformations catalyzed by the post-PKS tailoring enzymes in geldanamycin biosynthesis. The unprecedented formation of the macrolactones together with molecular modeling studies shed light on the mode of action of the amide synthase responsible for macrocyclization. Obviously, the 3-hydroxymethyl substituent shows similar reactivity and accessibility toward C-1 of the seco-acid as the arylamino group, while phenolic hydroxyl groups lack this propensity to act as nucleophiles in the macrocyclization. The promiscuity of the amide synthase of S. hygroscopicus was further demonstrated by successful feeding of four other m-hydroxymethylbenzoic acids, leading to formation of the expected 20-membered macrocycles. Good to moderate antiproliferative activities were encountered for three of the five new geldanamycin derivatives, which matched well with a competition assay for Hsp90α.
金诺霉素产生菌吸水链霉菌的酰胺合酶比 Ansamycin 类抗生素(包括高度细胞毒性的 Ansamitocin)产生菌游动放线菌中相应的酰胺合酶具有更广泛的化学选择性。当这两种菌株的无法生物合成 3-氨基-5-羟基苯甲酸(AHBA)的阻断突变体(这两种天然产物的聚酮合酶起始单元)被 3-氨基-5-羟甲基苯甲酸补充时,这一点得到了证明。与 Ansamitocin 产生菌 A. pretiosum 不同,吸水链霉菌不仅将这种修饰的起始单元加工成预期的 19 元大环内酯,还加工成环扩大的 20 元大环内酯。这些前突变产物揭示了金诺霉素生物合成中后聚酮体修饰酶催化的转化序列。前所未有的大环内酯的形成以及分子建模研究阐明了负责大环化的酰胺合酶的作用模式。显然,3-羟甲基取代基与芳氨基基团一样,对 seco-酸的 C-1 具有相似的反应性和可接近性,而酚羟基缺乏作为亲核体参与大环化的倾向。吸水链霉菌酰胺合酶的混杂性还通过成功喂食其他四种 m-羟甲基苯甲酸得到了进一步证明,导致预期的 20 元大环的形成。五种新金诺霉素衍生物中的三种具有良好到中等的抗增殖活性,这与 Hsp90α 的竞争测定结果相符。