Suppr超能文献

来自加利福尼亚贻贝的贻贝保护蛋白,mcfp-1 的分子相互作用。

Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus.

机构信息

Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V4.

出版信息

Biomaterials. 2012 Feb;33(6):1903-11. doi: 10.1016/j.biomaterials.2011.11.021. Epub 2011 Dec 3.

Abstract

Protective coating of the byssus of mussels (Mytilus sp.) has been suggested as a new paradigm of medical coating due to its high extensibility and hardness co-existence without their mutual detriment. The only known biomacromolecule in the extensible and tough coating on the byssus is mussel foot protein-1 (mfp-1), which is made up with positively charged residues (20 mol%) and lack of negatively charged residues. Here, adhesion and molecular interaction mechanisms of Mytilus californianus foot protein-1 (mcfp-1) from California blue mussel were investigated using a surface forces apparatus (SFA) in buffer solutions of different ionic concentrations (0.2-0.7 M) and pHs (3.0-5.5). Strong and reversible cohesion between opposed positively charged mcfp-1 films was measured in 0.1 M sodium acetate buffer with 0.1 M KNO(3). Cohesion of mcfp-1 was gradually reduced with increasing the ionic strength, but was not changed with pH variations. Oxidation of 3,4-dihydroxyphenylalanine (DOPA) residues of mcfp-1, a key residue for adhesive and coating proteins of mussel, didn't change the cohesion strength of mcfp-1 films, but the addition of chemicals with aromatic groups (i.e., aspirin and 4-methylcatechol) increased the cohesion. These results suggest that the cohesion of mcfp-1 films is mainly mediated by cation-π interactions between the positively charged residues and benzene rings of DOPA and other aromatic amino acids (20 mol% of total amino acids of mcfp-1), and π-π interactions between the phenyl groups in mcfp-1. The adhesion mechanism obtained for the mcfp-1 proteins provides important insight into the design and development of functional biomaterials and coatings mimicking the extensible and robust mussel cuticle coating.

摘要

贻贝(Mytilus sp.)的足丝具有高延展性和硬度共存的特性,而不会相互损害,因此被认为是一种新的医学涂层范例。在足丝上具有高延展性和坚韧的涂层中,唯一已知的生物大分子是贻贝足部蛋白-1(mfp-1),它由带正电荷的残基(约 20 摩尔%)和缺乏负电荷的残基组成。在这里,使用表面力仪(SFA)在不同离子浓度(0.2-0.7 M)和 pH 值(3.0-5.5)的缓冲溶液中研究了加利福尼亚蓝贻贝(Mytilus californianus)足部蛋白-1(mcfp-1)的粘附和分子相互作用机制。在 0.1 M 醋酸钠缓冲液中,用 0.1 M KNO 3 测量了带正电荷的相对 mcfp-1 薄膜之间的强而可逆的内聚。随着离子强度的增加,mcfp-1 的内聚逐渐降低,但 pH 值的变化没有改变。mcfp-1 中 3,4-二羟基苯丙氨酸(DOPA)残基的氧化,这是贻贝粘附和涂层蛋白的关键残基,没有改变 mcfp-1 薄膜的内聚强度,但添加具有芳香基团的化学物质(即阿司匹林和 4-甲基儿茶酚)增加了内聚。这些结果表明,mcfp-1 薄膜的内聚主要是由带正电荷的残基与 DOPA 和其他芳香族氨基酸的苯环之间的阳离子-π 相互作用(mcfp-1 总氨基酸的~20 摩尔%)以及 mcfp-1 中的苯环之间的 π-π 相互作用介导的。获得的 mcfp-1 蛋白的粘附机制为设计和开发模仿可伸展和坚固的贻贝表皮涂层的功能性生物材料和涂层提供了重要的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验