Vuppala Srimai, Chitumalla Ramesh Kumar, Choi Seyong, Kim Taeho, Park Hwangseo, Jang Joonkyung
Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea.
Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
ACS Omega. 2023 Dec 19;9(1):994-1000. doi: 10.1021/acsomega.3c07208. eCollection 2024 Jan 9.
Marine mussels adhere to virtually any surface via 3,4-dihydroxyphenyl-L-alanines (L-DOPA), an amino acid largely contained in their foot proteins. The biofriendly, water-repellent, and strong adhesion of L-DOPA are unparalleled by any synthetic adhesive. Inspired by this, we computationally designed diverse derivatives of DOPA and studied their potential as adhesives or coating materials. We used first-principles calculations to investigate the adsorption of the DOPA derivatives on graphite. The presence of an electron-withdrawing group, such as nitrogen dioxide, strengthens the adsorption by increasing the π-π interaction between DOPA and graphite. To quantify the distribution of electron charge and to gain insights into the charge distribution at interfaces, we performed Bader charge analysis and examined charge density difference plots. We developed a quantitative structure-property relationship (QSPR) model using an artificial neural network (ANN) to predict the adsorption energy. Using the three-dimensional and quantum mechanical electrostatic potential of a molecule as a descriptor, the present quantum NN model shows promising performance as a predictive QSPR model.
海洋贻贝通过3,4-二羟基苯丙氨酸(L-DOPA)附着在几乎任何表面上,L-DOPA是一种大量存在于其足部蛋白质中的氨基酸。L-DOPA的生物友好性、防水性和强附着力是任何合成粘合剂都无法比拟的。受此启发,我们通过计算设计了多种多巴衍生物,并研究了它们作为粘合剂或涂层材料的潜力。我们使用第一性原理计算来研究多巴衍生物在石墨上的吸附。吸电子基团(如二氧化氮)的存在通过增加多巴与石墨之间的π-π相互作用来增强吸附。为了量化电荷分布并深入了解界面处的电荷分布,我们进行了巴德电荷分析并检查了电荷密度差图。我们使用人工神经网络(ANN)开发了一种定量结构-性质关系(QSPR)模型来预测吸附能。使用分子的三维和量子力学静电势作为描述符,当前的量子神经网络模型作为预测性QSPR模型显示出有前景的性能。