Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, United States.
J Proteome Res. 2012 Jan 1;11(1):261-8. doi: 10.1021/pr201065k. Epub 2011 Dec 9.
Gene duplication is a significant source of novel genes and the dynamics of gene duplicate retention vs loss are poorly understood, particularly in terms of the functional and regulatory specialization of their gene products. We compiled a comprehensive data set of S. cerevisiae phosphosites to study the role of phosphorylation in yeast paralog divergence. We found that proteins coded by duplicated genes created in the Whole Genome Duplication (WGD) event and in a period prior to the WGD are significantly more phosphorylated than other duplicates or singletons. Though the amino acid sequence of each paralog of a given pair tends to diverge fairly similarly from their common ortholog in a related species, the phosphorylated amino acids tend to diverge in sequence from the ortholog at different rates. We observed that transcription factors (TFs) are disproportionately present among the set of duplicate genes and among the set of proteins that are phosphorylated. Interestingly, TFs that occur on higher levels of the transcription network hierarchy (i.e., tend to regulate other TFs) tend to be more phosphorylated than lower-level TFs. We found that TF paralog divergence in expression, binding, and sequence correlates with the abundance of phosphosites. Overall, these studies have important implications for understanding divergence of gene function and regulation in eukaryotes.
基因复制是新基因的重要来源,而基因重复保留与丢失的动态变化在很大程度上仍未被理解,特别是在其基因产物的功能和调控特化方面。我们编制了一个综合性的酿酒酵母磷酸化位点数据集,以研究磷酸化在酵母基因复制分化中的作用。我们发现,在全基因组复制(Whole Genome Duplication,WGD)事件和 WGD 之前的一段时间内产生的复制基因编码的蛋白质比其他重复基因或单拷贝基因更容易发生磷酸化。虽然给定对的每个基因复制的氨基酸序列往往与其在相关物种中的共同直系同源物相当相似地趋异,但磷酸化氨基酸的序列趋异速度却不同。我们观察到,转录因子(Transcription Factors,TFs)在重复基因和磷酸化蛋白质集中的比例不成比例。有趣的是,位于转录网络层次结构较高水平的 TFs(即倾向于调节其他 TFs)比低水平的 TFs 更容易发生磷酸化。我们发现,TF 基因复制在表达、结合和序列上的差异与磷酸化位点的丰度相关。总的来说,这些研究对于理解真核生物中基因功能和调控的分化具有重要意义。