Huypens Peter R, Huang Mei, Joseph Jamie W
School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada.
Islets. 2012 Jan-Feb;4(1):1-116. doi: 10.4161/isl.18338. Epub 2011 Dec 6.
The ability of the pancreatic β-cells to adapt the rate of insulin release in accordance to changes in circulating glucose levels is essential for glucose homeostasis. Two spatial barriers imposed by the plasma membrane and inner mitochondrial membrane need to be overcome in order to achieve stringent coupling between the different steps in the stimulus-secretion cascade. The first spatial barrier is overcome by the presence of a glucose transporter (GLUT) in the plasma membrane, whereas a low affinity hexokinase IV (glucokinase, GK) in the cytosol conveys glucose availability into a metabolic flux that triggers and accelerates insulin release. The mitochondrial inner membrane comprises a second spatial barrier that compartmentalizes glucose metabolism into glycolysis (cytosol) and tricarboxylate (TCA) cycle (mitochondrial matrix). The exchange of metabolites between cytosol and mitochondrial matrix is mediated via a set of mitochondrial carriers, including the aspartate-glutamate carrier (aralar1), α- ketoglutarate carrier (OGC), ATP/ADP carrier (AAC), glutamate carrier (GC1), dicarboxylate carrier (DIC) and citrate/isocitrate carrier (CIC). The scope of this review is to provide an overview of the role these carriers play in stimulus-secretion coupling and discuss the importance of these findings in the context of the exquisite glucose responsive state of the pancreatic β-cell.
胰腺β细胞根据循环葡萄糖水平的变化来调整胰岛素释放速率的能力对于葡萄糖稳态至关重要。为了在刺激-分泌级联反应的不同步骤之间实现严格的偶联,需要克服由质膜和线粒体内膜形成的两个空间屏障。第一个空间屏障可通过质膜中葡萄糖转运蛋白(GLUT)的存在来克服,而胞质溶胶中的低亲和力己糖激酶IV(葡萄糖激酶,GK)则将葡萄糖的可利用性转化为触发并加速胰岛素释放的代谢通量。线粒体内膜构成了第二个空间屏障,它将葡萄糖代谢分隔为糖酵解(胞质溶胶)和三羧酸(TCA)循环(线粒体基质)。胞质溶胶和线粒体基质之间的代谢物交换是通过一组线粒体载体介导的,包括天冬氨酸-谷氨酸载体(aralar1)、α-酮戊二酸载体(OGC)、ATP/ADP载体(AAC)、谷氨酸载体(GC1)、二羧酸载体(DIC)和柠檬酸/异柠檬酸载体(CIC)。本综述的范围是概述这些载体在刺激-分泌偶联中所起的作用,并在胰腺β细胞精细的葡萄糖反应状态背景下讨论这些发现的重要性。