Biozentrum, University of Basel, 4056 Basel, Switzerland.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20808-13. doi: 10.1073/pnas.1111448109. Epub 2011 Dec 5.
Mammalian target of rapamycin complex 1 (mTORC1) is central to the control of cell, organ, and body size. Skeletal muscle-specific inactivation of mTORC1 in mice results in smaller muscle fibers, fewer mitochondria, increased glycogen stores, and a progressive myopathy that causes premature death. In mTORC1-deficient muscles, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which regulates mitochondrial biogenesis and glucose homeostasis, is strongly down-regulated. Here we tested whether induction of mitochondrial biogenesis pharmacologically or by the overexpression of PGC-1α is sufficient to reverse the phenotype of mice deficient for mTORC1. We show that both approaches normalize mitochondrial function, such as oxidative capacity and expression of mitochondrial genes. However, they do not prevent or delay the progressive myopathy. In addition, we find that mTORC1 has a much stronger effect than PGC-1α on the glycogen content in muscle. This effect is based on the strong activation of PKB/Akt in mTORC1-deficient mice. We also show that activation of PKB/Akt not only affects glycogen synthesis but also diminishes glycogen degradation. Thus, our work provides strong functional evidence that mitochondrial dysfunction in mice with inactivated mTORC1 signaling is caused by the down-regulation of PGC-1α. However, our data also show that the impairment of mitochondria does not lead directly to the lethal myopathy.
哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)是控制细胞、器官和机体大小的核心。在小鼠中,骨骼肌特异性的 mTORC1 失活会导致肌肉纤维变小、线粒体减少、糖原储存增加以及进行性肌病,从而导致过早死亡。在 mTORC1 缺陷的肌肉中,调节线粒体生物发生和葡萄糖稳态的过氧化物酶体增殖物激活受体γ共激活因子 1-α(PGC-1α)强烈下调。在这里,我们测试了通过药理学诱导线粒体生物发生或过表达 PGC-1α 是否足以逆转 mTORC1 缺陷小鼠的表型。我们表明,这两种方法都可以使线粒体功能正常化,例如氧化能力和线粒体基因的表达。然而,它们并不能预防或延迟进行性肌病。此外,我们发现 mTORC1 对肌肉中糖原含量的影响比 PGC-1α 强得多。这种效应基于 mTORC1 缺陷小鼠中 PKB/Akt 的强烈激活。我们还表明,PKB/Akt 的激活不仅影响糖原合成,还减少糖原降解。因此,我们的工作提供了强有力的功能证据,表明失活的 mTORC1 信号转导会导致 PGC-1α 下调,从而导致小鼠的线粒体功能障碍。然而,我们的数据还表明,线粒体的损伤并不会直接导致致命的肌病。