Suppr超能文献

用于识别上下文群组活动的判别潜在模型。

Discriminative latent models for recognizing contextual group activities.

机构信息

School of Computing Science, Simon Fraser University, Burnaby, BC, Canada.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Aug;34(8):1549-62. doi: 10.1109/TPAMI.2011.228.

Abstract

In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities.

摘要

在本文中,我们超越了识别个体行为的范畴,专注于群体活动。这是基于这样一种观察:人类行为很少是孤立进行的;场景中其他人在做什么的上下文信息为理解高级活动提供了有用的线索。我们提出了一个新的框架来识别群体活动,该框架共同捕捉了群体活动、个体行为以及它们之间的相互作用。在潜在变量框架中探索了两种类型的上下文信息,即群体-人交互和人-人交互。具体来说,我们提出了三种不同的方法来建模人-人交互。一种方法是探索人-人交互的结构。与大多数之前的潜在结构模型不同,这些模型假设隐藏层的预定义结构,例如树结构,我们将隐藏层的结构视为一个潜在变量,并在学习和推理过程中隐式推断它。第二种方法是在特征层面探索人-人交互。我们引入了一种新的特征表示,称为动作上下文(AC)描述符。AC 描述符不仅编码了视频中个体行为的信息,还编码了附近其他人的行为信息。第三种方法结合了上述两种方法。我们的实验结果证明了使用上下文信息来消除群体活动歧义的好处。

相似文献

1
Discriminative latent models for recognizing contextual group activities.用于识别上下文群组活动的判别潜在模型。
IEEE Trans Pattern Anal Mach Intell. 2012 Aug;34(8):1549-62. doi: 10.1109/TPAMI.2011.228.
2
Learning person-person interaction in collective activity recognition.学习集体活动识别中的人与人交互。
IEEE Trans Image Process. 2015 Jun;24(6):1905-18. doi: 10.1109/TIP.2015.2409564. Epub 2015 Mar 6.
3
Optimizing nondecomposable loss functions in structured prediction.优化结构预测中的不可分解损失函数。
IEEE Trans Pattern Anal Mach Intell. 2013 Apr;35(4):911-24. doi: 10.1109/TPAMI.2012.168.
4
Understanding Collective Activities of People from Videos.理解视频中人们的集体活动。
IEEE Trans Pattern Anal Mach Intell. 2014 Jun;36(6):1242-57. doi: 10.1109/TPAMI.2013.220.
6
Animated pose templates for modeling and detecting human actions.用于建模和检测人体动作的动画姿势模板。
IEEE Trans Pattern Anal Mach Intell. 2014 Mar;36(3):436-52. doi: 10.1109/TPAMI.2013.144.
7
Learning sparse representations for human action recognition.学习人类动作识别的稀疏表示。
IEEE Trans Pattern Anal Mach Intell. 2012 Aug;34(8):1576-88. doi: 10.1109/TPAMI.2011.253.
8
Close Human Interaction Recognition Using Patch-Aware Models.基于补丁感知模型的近距人类交互识别
IEEE Trans Image Process. 2016 Jan;25(1):167-78. doi: 10.1109/TIP.2015.2498410. Epub 2015 Nov 5.
9
Human Interaction Understanding With Joint Graph Decomposition and Node Labeling.基于联合图分解和节点标注的人际交互理解
IEEE Trans Image Process. 2021;30:6240-6254. doi: 10.1109/TIP.2021.3093383. Epub 2021 Jul 12.
10
Explicit modeling of human-object interactions in realistic videos.真实视频中人类-物体交互的显式建模。
IEEE Trans Pattern Anal Mach Intell. 2013 Apr;35(4):835-48. doi: 10.1109/TPAMI.2012.175.

本文引用的文献

2
Actions as space-time shapes.作为时空形态的行动。
IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2247-53. doi: 10.1109/TPAMI.2007.70711.
3
Hidden conditional random fields.隐条件随机字段
IEEE Trans Pattern Anal Mach Intell. 2007 Oct;29(10):1848-53. doi: 10.1109/TPAMI.2007.1124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验