Department of Statistics, Florida State University, 117 N. Woodward Ave., PO Box 3064330, Tallahassee, FL 32306, USA.
IEEE Trans Pattern Anal Mach Intell. 2012 Sep;34(9):1717-30. doi: 10.1109/TPAMI.2011.233.
This paper presents a novel Riemannian framework for shape analysis of parameterized surfaces. In particular, it provides efficient algorithms for computing geodesic paths which, in turn, are important for comparing, matching, and deforming surfaces. The novelty of this framework is that geodesics are invariant to the parameterizations of surfaces and other shape-preserving transformations of surfaces. The basic idea is to formulate a space of embedded surfaces (surfaces seen as embeddings of a unit sphere in IR3) and impose a Riemannian metric on it in such a way that the reparameterization group acts on this space by isometries. Under this framework, we solve two optimization problems. One, given any two surfaces at arbitrary rotations and parameterizations, we use a path-straightening approach to find a geodesic path between them under the chosen metric. Second, by modifying a technique presented in [25], we solve for the optimal rotation and parameterization (registration) between surfaces. Their combined solution provides an efficient mechanism for computing geodesic paths in shape spaces of parameterized surfaces. We illustrate these ideas using examples from shape analysis of anatomical structures and other general surfaces.
本文提出了一种新的黎曼框架,用于参数化曲面的形状分析。特别是,它提供了计算测地线路径的有效算法,而测地线路径对于比较、匹配和变形曲面非常重要。该框架的新颖之处在于,测地线对于曲面的参数化和其他保持形状的曲面变换是不变的。基本思想是将嵌入曲面的空间(将曲面视为单位球体在 IR3 中的嵌入)公式化,并以这样的方式在其上施加黎曼度量,即重参数化组通过等距作用于该空间。在这个框架下,我们解决了两个优化问题。其一,给定任意两个处于任意旋转和参数化的曲面,我们使用路径拉直方法在选定的度量下找到它们之间的测地线路径。其二,通过修改 [25] 中提出的技术,我们解决了曲面之间的最佳旋转和参数化(配准)问题。它们的联合解决方案为参数化曲面的形状空间中的测地线路径计算提供了高效的机制。我们使用来自解剖结构和其他一般曲面的形状分析示例来说明这些想法。