Su Zhengyu, Wang Yalin, Shi Rui, Zeng Wei, Sun Jian, Luo Feng, Gu Xianfeng
IEEE Trans Pattern Anal Mach Intell. 2015 Nov;37(11):2246-59. doi: 10.1109/TPAMI.2015.2408346.
Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n(2)) to O(n) . For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach.
基于表面的三维形状分析在计算机视觉和医学成像中起着基础性作用。这项工作提出使用最优传输映射进行形状匹配和比较,重点关注包括表面配准和形状空间在内的两个重要应用。最优传输映射的计算基于蒙日 - 布雷尼尔理论,与基于蒙日 - 康托罗维奇理论的传统方法相比,该方法通过将计算复杂度从(O(n^2))降低到(O(n))显著提高了效率。对于表面配准问题,一种常用的方法是使用共形映射将形状转换到某个规范空间。尽管共形映射具有小角度失真,但它们可能会引入大面积失真,这很可能导致数值不稳定,从而导致形状分析失败。这项工作提出将共形映射与最优传输映射相结合以获得唯一的保面积映射,该映射对于黎曼度量是内在的、唯一的且是微分同胚的。对于形状空间研究,这项工作通过结合共形几何和最优传输理论引入了一个新颖的黎曼框架,即共形瓦瑟斯坦形状空间。在我们的工作中,所有具有圆盘拓扑的度量曲面通过共形映射被映射到单位平面圆盘,这将曲面上的面积元素推到圆盘上的概率测度。最优传输提供了一个从所有具有度量的拓扑圆盘的形状空间到圆盘的瓦瑟斯坦空间的映射,并且拉回瓦瑟斯坦度量为形状空间配备了黎曼度量。我们通过大量实验以及与先前方法的比较来验证我们的工作,实验结果证明了我们提出的方法的效率和有效性。