Suppr超能文献

δ-阿片受体介导的 GABA 突触传递抑制和行为镇痛作用的信号级联反应。

Signaling cascades for δ-opioid receptor-mediated inhibition of GABA synaptic transmission and behavioral antinociception.

机构信息

Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Mol Pharmacol. 2012 Mar;81(3):375-83. doi: 10.1124/mol.111.076307. Epub 2011 Dec 5.

Abstract

Membrane trafficking of the δ-opioid receptor (DOR) from intracellular compartments to plasma membrane in central neurons, induced by various pathological conditions such as long-term opioid exposure, represents unique receptor plasticity involved in the mechanisms of long-term opioid effects in opioid addiction and opioid treatment of chronic pain. However, the signaling pathways coupled to the newly emerged functional DOR in central neurons are largely unknown at present. In this study, we investigated the signaling cascades of long-term morphine-induced DOR for its cellular and behavioral effects in neurons of the rat brainstem nucleus raphe magnus (NRM), a key supraspinal site for opioid analgesia. We found that, among the three phospholipase A(2) (PLA(2))-regulated arachidonic acid (AA) metabolic pathways of lipoxygenase, cyclooxygenase, and epoxygenase, 12-lipoxygenase of the lipoxygenase pathway primarily mediated DOR inhibition of GABA synaptic transmission, because inhibitors of 12-lipoxygenase as well as lipoxygenases and PLA(2) largely blocked the DOR- or AA-induced GABA inhibition in NRM neurons in brainstem slices in vitro. Blockade of the epoxygenase pathway was ineffective, whereas blocking either 5-lipoxygenase of the lipoxygenase pathway or the cyclooxygenase pathway enhanced the DOR-mediated GABA inhibition. Behaviorally in rats in vivo, NRM infusion of 12-lipoxygenase inhibitors significantly reduced DOR-induced antinociceptive effect whereas inhibitors of 5-lipoxygenase and cyclooxygenase augmented the DOR antinociception. These findings suggest the PLA(2)-AA-12-lipoxygenase pathway as a primary signaling cascade for DOR-mediated analgesia through inhibition of GABA neurotransmission and indicate potential therapeutic benefits of combining 5-lipoxygenase and cyclooxygenase inhibitors for maximal pain inhibition.

摘要

δ 型阿片受体(DOR)从细胞内区室到中枢神经元质膜的膜转运,由各种病理条件如长期阿片类药物暴露诱导,代表了与阿片成瘾和慢性疼痛的阿片类药物治疗中阿片类药物长期效应机制相关的独特受体可塑性。然而,目前对于新出现的中枢神经元功能性 DOR 偶联的信号通路知之甚少。在这项研究中,我们研究了长期吗啡诱导的 DOR 的信号级联反应,以了解其在大鼠脑干中缝核巨细胞(NRM)神经元中的细胞和行为效应,NRM 是阿片类药物镇痛的关键脑桥上位点。我们发现,在三种脂氧合酶(LOX)、环氧化酶和环氧合酶调控的花生四烯酸(AA)代谢途径中,LOX 途径的 12-LOX 主要介导 DOR 抑制 GABA 突触传递,因为 12-LOX 抑制剂以及 LOX 和 PLA2 的抑制剂在体外脑片的 NRM 神经元中很大程度上阻断了 DOR 或 AA 诱导的 GABA 抑制。环氧合酶途径的阻断无效,而阻断 LOX 途径的 5-LOX 或环氧合酶途径增强了 DOR 介导的 GABA 抑制。在体内大鼠的行为研究中,NRM 内注射 12-LOX 抑制剂显著降低了 DOR 诱导的镇痛作用,而 5-LOX 和环氧合酶抑制剂则增强了 DOR 的镇痛作用。这些发现表明 PLA2-AA-12-LOX 途径是 DOR 介导的镇痛的主要信号级联反应,通过抑制 GABA 神经传递,表明联合使用 5-LOX 和环氧合酶抑制剂以实现最大的止痛效果具有潜在的治疗益处。

相似文献

1
Signaling cascades for δ-opioid receptor-mediated inhibition of GABA synaptic transmission and behavioral antinociception.
Mol Pharmacol. 2012 Mar;81(3):375-83. doi: 10.1124/mol.111.076307. Epub 2011 Dec 5.
2
Synaptic mechanism for functional synergism between delta- and mu-opioid receptors.
J Neurosci. 2010 Mar 31;30(13):4735-45. doi: 10.1523/JNEUROSCI.5968-09.2010.
4
Histone deacetylase inhibitor-induced emergence of synaptic δ-opioid receptors and behavioral antinociception in persistent neuropathic pain.
Neuroscience. 2016 Dec 17;339:54-63. doi: 10.1016/j.neuroscience.2016.09.015. Epub 2016 Sep 17.
5
Contribution of brainstem GABA(A) synaptic transmission to morphine analgesic tolerance.
Pain. 2006 May;122(1-2):163-73. doi: 10.1016/j.pain.2006.01.031. Epub 2006 Mar 9.
6
Ethanol-induced delta-opioid receptor modulation of glutamate synaptic transmission and conditioned place preference in central amygdala.
Neuroscience. 2009 May 5;160(2):348-58. doi: 10.1016/j.neuroscience.2009.02.049. Epub 2009 Mar 1.
7
How opioids inhibit GABA-mediated neurotransmission.
Nature. 1997 Dec 11;390(6660):611-4. doi: 10.1038/37610.
8
Rewarding morphine-induced synaptic function of delta-opioid receptors on central glutamate synapses.
J Pharmacol Exp Ther. 2009 Apr;329(1):290-6. doi: 10.1124/jpet.108.148908. Epub 2009 Jan 23.
9
Dual regulation of δ-opioid receptor function by arachidonic acid metabolites in rat peripheral sensory neurons.
J Pharmacol Exp Ther. 2015 Apr;353(1):44-51. doi: 10.1124/jpet.114.221366. Epub 2015 Jan 30.

引用本文的文献

1
Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters.
Front Pharmacol. 2023 Apr 20;14:1159753. doi: 10.3389/fphar.2023.1159753. eCollection 2023.
2
Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics.
Neuropharmacology. 2023 Mar 15;226:109408. doi: 10.1016/j.neuropharm.2022.109408. Epub 2022 Dec 28.
3
A Critical Role of δ-Opioid Receptor in Anti-microglial Activation Under Stress.
Front Aging Neurosci. 2022 May 19;14:847386. doi: 10.3389/fnagi.2022.847386. eCollection 2022.
4
The role of peptidase neurolysin in neuroprotection and neural repair after stroke.
Neural Regen Res. 2021 Jan;16(1):21-25. doi: 10.4103/1673-5374.284904.
5
Molecular Pharmacology of δ-Opioid Receptors.
Pharmacol Rev. 2016 Jul;68(3):631-700. doi: 10.1124/pr.114.008979.
6
Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms.
Drug Metab Dispos. 2015 Sep;43(9):1326-30. doi: 10.1124/dmd.115.065490. Epub 2015 Jun 24.
7
Neuronal cytochrome P450 activity and opioid analgesia: relevant sites and mechanisms.
Brain Res. 2015 Aug 7;1616:10-8. doi: 10.1016/j.brainres.2015.04.045. Epub 2015 Apr 29.
8
Dual regulation of δ-opioid receptor function by arachidonic acid metabolites in rat peripheral sensory neurons.
J Pharmacol Exp Ther. 2015 Apr;353(1):44-51. doi: 10.1124/jpet.114.221366. Epub 2015 Jan 30.
9
GABAergic transmission and enhanced modulation by opioids and endocannabinoids in adult rat rostral ventromedial medulla.
J Physiol. 2015 Jan 1;593(1):217-30. doi: 10.1113/jphysiol.2014.275701. Epub 2014 Nov 25.
10
Deficits in neuronal cytochrome P450 activity attenuate opioid analgesia but not opioid side effects.
Eur J Pharmacol. 2014 Oct 5;740:255-62. doi: 10.1016/j.ejphar.2014.07.028. Epub 2014 Jul 22.

本文引用的文献

1
Epigenetic suppression of GAD65 expression mediates persistent pain.
Nat Med. 2011 Oct 9;17(11):1448-55. doi: 10.1038/nm.2442.
2
Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers.
J Neurosci. 2011 Jan 26;31(4):1313-22. doi: 10.1523/JNEUROSCI.4060-10.2011.
3
Exploring a role for heteromerization in GPCR signalling specificity.
Biochem J. 2011 Jan 1;433(1):11-8. doi: 10.1042/BJ20100458.
4
Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing.
Nat Neurosci. 2010 Oct;13(10):1249-56. doi: 10.1038/nn.2643. Epub 2010 Sep 19.
5
Nerve growth factor-regulated emergence of functional delta-opioid receptors.
J Neurosci. 2010 Apr 21;30(16):5617-28. doi: 10.1523/JNEUROSCI.5296-09.2010.
6
Synaptic mechanism for functional synergism between delta- and mu-opioid receptors.
J Neurosci. 2010 Mar 31;30(13):4735-45. doi: 10.1523/JNEUROSCI.5968-09.2010.
8
Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling.
Nat Neurosci. 2010 Mar;13(3):284-6. doi: 10.1038/nn.2497. Epub 2010 Feb 7.
9
Rewarding morphine-induced synaptic function of delta-opioid receptors on central glutamate synapses.
J Pharmacol Exp Ther. 2009 Apr;329(1):290-6. doi: 10.1124/jpet.108.148908. Epub 2009 Jan 23.
10
Calcium channel regulation and presynaptic plasticity.
Neuron. 2008 Sep 25;59(6):882-901. doi: 10.1016/j.neuron.2008.09.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验