Laboratory of Molecular and Cellular Biology, Kyoto Sangyo University, Kyoto, Japan.
Antioxid Redox Signal. 2012 Apr 15;16(8):790-9. doi: 10.1089/ars.2011.4418. Epub 2012 Jan 25.
Disulfide bond formation is an essential reaction involved in the folding and maturation of many secreted and membrane proteins. Both prokaryotic and eukaryotic cells utilize various disulfide oxidoreductases and redox-active cofactors to accelerate this oxidative reaction, and higher eukaryotes have diversified and refined these disulfide-introducing cascades over the course of evolution.
In the past decade, atomic resolution structures have been solved for an increasing number of disulfide oxidoreductases, thereby revealing the structural and mechanistic basis of cellular disulfide bond formation systems.
In this review, we focus on the evolution, structure, and regulatory mechanisms of endoplasmic reticulum oxidoreductin 1 (Ero1) family enzymes, the primary disulfide bond-generating catalysts in the endoplasmic reticulum (ER). Detailed comparison of Ero1 with other oxidoreductases, such as Prx4, QSOX, Erv1/2, and disulfide bond protein B (DsbB), provides important insight into how this ER-resident flavoenzyme acts in a regulated and specific manner to maintain redox and protein homeostasis in eukaryotic cells.
Currently, it is presumed that multiple pathways in addition to that mediated by Ero1 cooperate to achieve oxidative folding of many secretory and membrane proteins in mammalian cells. The important open question is how each oxidative pathway works distinctly or redundantly in response to various cellular conditions.
二硫键的形成是许多分泌蛋白和膜蛋白折叠和成熟所必需的反应。原核细胞和真核细胞都利用各种二硫键氧化还原酶和氧化还原活性辅因子来加速这一氧化反应,而高等真核生物在进化过程中已经多样化和完善了这些引入二硫键的级联反应。
在过去的十年中,越来越多的二硫键氧化还原酶的原子分辨率结构已经被解析,从而揭示了细胞中二硫键形成系统的结构和机制基础。
在这篇综述中,我们专注于内质网氧化还原酶 1(Ero1)家族酶的进化、结构和调节机制,这是内质网(ER)中二硫键生成的主要催化剂。Ero1 与其他氧化还原酶(如 Prx4、QSOX、Erv1/2 和二硫键蛋白 B(DsbB))的详细比较,为了解这种内质网驻留黄素酶如何以受调控和特异的方式在真核细胞中维持氧化还原和蛋白质平衡提供了重要的见解。
目前,据推测,除了 Ero1 介导的途径之外,还有多种途径共同作用,以实现哺乳动物细胞中许多分泌蛋白和膜蛋白的氧化折叠。一个重要的悬而未决的问题是,每个氧化途径如何根据不同的细胞条件以独特或冗余的方式发挥作用。