Suppr超能文献

从发展中国家不同数据源推断卫生支出估计值:以巴基斯坦私人卫生支出为例。

Triangulating health expenditure estimates from different data sources in developing countries: the case of Pakistan's private health expenditure.

机构信息

German Development Cooperation, Islamabad, Pakistan.

出版信息

Appl Health Econ Health Policy. 2012 Jan 1;10(1):1-13. doi: 10.2165/11595230-000000000-00000.

Abstract

This article deals with the accuracy of statistical records used for political decision making and international comparative analysis. In developing countries, even major macroeconomic indicators can include data inadequacies and methodological differences in data generation between statistical agencies. Existing data show that total health expenditure as a percentage of GDP is about 50% lower in Pakistan than in other low-income countries (LIC). To determine whether these results reflect the actual situation in Pakistan or whether they are due to statistical error, Pakistan produced National Health Accounts (NHA) for the first time in 2009 to assess health spending in 2005-6. Improved NHA estimates are also being made for 2007-8, which will be based on the following: public expenditure data published with time lags; survey results for 2007-8; and multivariate analyses of data from 2010 and 2011 surveys on health-specific out-of-pocket (OOP) expenditure, healthcare providers, non-profit institutions and census data on autonomous bodies and large hospitals. Since these data are not yet available, a best estimate of health expenditure has to be made to support policy decision making and to provide a point of comparison for future NHA results. Health expenditure data are available from different data sources and estimates have been made by applying different methods, leading to a range of health spending estimates. As a result of this diversity of estimates and data, each with its own inaccuracies or gaps, there was a clear need to triangulate the available information and to identify a best possible estimate. This article compares estimates of household health expenditure from different sources, such as the Household Integrated Economic Survey, the Family Budget Survey and National Accounts (NA). The analysis shows that health expenditure figures for Pakistan have been underestimated by both WHO and the NHA. An adjusted estimate shows OOP spending to be twice as high as previously thought. Previous per capita total health expenditure estimates ranged from $US16 to $US19. The revised estimate showed per capita total health expenditure to be $US33, based on NA data. This puts Pakistan in a different position in international comparisons, with health expenditure exceeding the level of India ($US32.5) and the average of all LIC ($US24.5). Methodological differences in estimating expenditure and the multiple and conflicting estimates might cause stakeholders to make potentially adverse or even erroneous policy decisions on the allocation of resources. Because policy makers make decisions based on the estimates provided, the provision of a best estimate, made following a review of the advantages and limitations of existing sources and methods, is key.

摘要

本文讨论了用于政治决策和国际比较分析的统计记录的准确性。在发展中国家,即使是主要的宏观经济指标,也可能包括统计机构之间数据生成方面的不足和方法差异。现有数据显示,巴基斯坦的卫生总支出占国内生产总值(GDP)的比例比其他低收入国家(LIC)低约 50%。为了确定这些结果是否反映了巴基斯坦的实际情况,或者它们是否是由于统计误差造成的,巴基斯坦于 2009 年首次编制了国家卫生账户(NHA),以评估 2005-2006 年的卫生支出情况。巴基斯坦还在对 2007-2008 年的数据进行改进估计,这些数据将基于以下内容:公布时滞的公共支出数据;2007-2008 年的调查结果;以及对 2010 年和 2011 年卫生特定自付(OOP)支出、医疗保健提供者、非营利机构以及自治机构和大型医院普查数据的多元分析。由于这些数据尚不可用,因此必须做出卫生支出的最佳估计,以支持政策决策,并为未来的 NHA 结果提供比较点。可以从不同的数据源获得卫生支出数据,并采用不同的方法进行估计,从而产生了一系列卫生支出估计值。由于这些估计值和数据的多样性,以及它们各自的不准确性或差距,因此显然需要对可用信息进行三角测量,并确定最佳的估计值。本文比较了来自不同来源的家庭卫生支出估计值,例如家庭综合经济调查、家庭预算调查和国民账户(NA)。分析表明,世界卫生组织和国家卫生账户都低估了巴基斯坦的卫生支出。调整后的估计显示,自付支出是之前认为的两倍。之前的人均总卫生支出估计值在 16 美元至 19 美元之间。根据国民账户数据,修订后的估计显示人均总卫生支出为 33 美元。这使得巴基斯坦在国际比较中处于不同的地位,卫生支出超过了印度(32.5 美元)和所有 LIC(24.5 美元)的平均水平。估计支出的方法差异以及多重和相互冲突的估计可能导致利益相关者在资源分配方面做出潜在的不利甚至错误的政策决策。由于决策者根据提供的估计做出决策,因此提供经过审查现有来源和方法的优缺点后得出的最佳估计值是关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验