Career-Path Promotion Unit for Young Life Scientists, Kyoto University, 202 Building E, Graduate School of Medicine, Kyoto 606-8501, Japan.
J Am Chem Soc. 2012 Jan 18;134(2):999-1009. doi: 10.1021/ja207173p. Epub 2011 Dec 29.
In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E(sq/hq)) is ~170 mV, a striking difference. The former greatly prefers NAD(+) as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD(+)), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 Å resolution crystal structures for XDH, XO, the NAD(+)- and NADH-complexed XDH, E(sq/hq) were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E(sq/hq) difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD(+) binding at XDH. Instead, the positive charge of the NAD(+) ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD(+) molecule all contribute to altering E(sq/hq) upon NAD(+) binding to XDH.
在哺乳动物中,黄嘌呤氧化还原酶可以存在为黄嘌呤脱氢酶 (XDH) 和黄嘌呤氧化酶 (XO)。两种酶具有共同的氧化还原活性辅因子,形成一个电子转移 (ET) 途径,由黄素辅因子终止。尽管蛋白质的一级结构相同,但 XDH 和 XO 之间黄素半醌/氢醌对 (E(sq/hq)) 的氧化还原电位差为~170 mV,这是一个显著的差异。前者更倾向于 NAD(+) 作为电子供体,通过黄素从铁硫簇 FeS-II 进行 ET,而后者仅接受氧气。然而,在 XDH(没有 NAD(+))中,电子供体 FeS-II 的氧化还原电位比接受体黄素高 180 mV,产生能量上向上的 ET。基于 XDH、XO、NAD(+)-和 NADH-复合物 XDH 的新的 1.65、2.3、1.9 和 2.2 Å 分辨率晶体结构,计算了 E(sq/hq),以更好地理解酶如何激活从 FeS-II 到黄素的 ET。XDH 和 XO 之间 E(sq/hq) 的大部分差异源自黄素结合位点附近位置 423-433 的环的构象变化,导致半醌态的稳定性差异。在 XDH 中,没有观察到 NAD(+) 结合引起的大构象变化。相反,NAD(+) 环的正电荷、Asp429 的去质子化以及 NAD(+) 分子对黄素的表面覆盖都有助于改变 NAD(+) 结合到 XDH 时的 E(sq/hq)。