Suppr超能文献

光系统II中非血红素铁复合物的氧化作用。

Oxidation of the non-heme iron complex in photosystem II.

作者信息

Ishikita Hiroshi, Knapp Ernst-Walter

机构信息

Institute of Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany.

出版信息

Biochemistry. 2005 Nov 15;44(45):14772-83. doi: 10.1021/bi051099v.

Abstract

In photosystem II (PSII), the redox properties of the non-heme iron complex (Fe complex) are sensitive to the redox state of quinones (Q(A/)(B)), which may relate to the electron/proton transfer. We calculated the redox potentials for one-electron oxidation of the Fe complex in PSII [E(m)(Fe)] based on the reference value E(m)(Fe) = +400 mV at pH 7 in the Q(A)(0)Q(B)(0) state, considering the protein environment in atomic detail and the associated changes in protonation pattern. Our model yields the pH dependence of E(m)(Fe) with -60 mV/pH as observed in experimental redox titration. We observed significant deprotonation at D1-Glu244 in the hydrophilic loop region upon Fe complex oxidation. The calculated pK(a) value for D1-Glu244 depends on the Fe complex redox state, yielding a pK(a) of 7.5 and 5.5 for Fe(2+) and Fe(3+), respectively. To account for the pH dependence of E(m)(Fe), a model involving not only D1-Glu244 but also the other titratable residues (five Glu in the D-de loops and six basic residues near the Fe complex) seems to be needed, implying the existence of a network of residues serving as an internal proton reservoir. Reduction of Q(A/B) yields +302 mV and +268 mV for E(m)(Fe) in the Q(A)(-)Q(B)(0) and Q(A)(0)Q(B)(-) states, respectively. Upon formation of the Q(A)(0)Q(B)(-) state, D1-His252 becomes protonated. Forming Fe(3+)Q(B)H(2) by a proton-coupled electron transfer process from the initial state Fe(2+)Q(B)(-) results in deprotonation of D1-His252. The two EPR signals observed at g = 1.82 and g = 1.9 in the Fe(2+)Q(A)(-) state of PSII may be attributed to D1-His252 with variable and fixed protonation, respectively.

摘要

在光系统II(PSII)中,非血红素铁复合物(铁复合物)的氧化还原性质对醌类(Q(A/)(B))的氧化还原状态敏感,这可能与电子/质子转移有关。我们基于Q(A)(0)Q(B)(0)状态下pH 7时E(m)(Fe) = +400 mV的参考值,考虑到原子细节的蛋白质环境和质子化模式的相关变化,计算了PSII中铁复合物单电子氧化的氧化还原电位[E(m)(Fe)]。我们的模型得出了如实验氧化还原滴定中观察到的E(m)(Fe)对pH的依赖性,即-60 mV/pH。我们观察到铁复合物氧化时,亲水环区域的D1-Glu244发生了显著的去质子化。计算得出的D1-Glu244的pK(a)值取决于铁复合物的氧化还原状态,Fe(2+)和Fe(3+)的pK(a)值分别为7.5和5.5。为了解释E(m)(Fe)对pH的依赖性,似乎需要一个不仅涉及D1-Glu244,还涉及其他可滴定残基(D-de环中的五个Glu和铁复合物附近的六个碱性残基)的模型,这意味着存在一个作为内部质子库的残基网络。Q(A/B)的还原分别在Q(A)(-)Q(B)(0)和Q(A)(0)Q(B)(-)状态下使E(m)(Fe)产生+302 mV和+268 mV的变化。在形成Q(A)(0)Q(B)(-)状态时,D1-His252会质子化。通过从初始状态Fe(2+)Q(B)(-)进行质子耦合电子转移过程形成Fe(3+)Q(B)H(2)会导致D1-His252去质子化。在PSII的Fe(2+)Q(A)(-)状态下,在g = 1.82和g = 1.9处观察到的两个电子顺磁共振信号可能分别归因于具有可变和固定质子化的D1-His252。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验