Suppr超能文献

数据预处理程序对主成分分析的影响:以红树林表层沉积物数据集为例。

Effect of data pre-treatment procedures on principal component analysis: a case study for mangrove surface sediment datasets.

机构信息

Center of Marine Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

出版信息

Environ Monit Assess. 2012 Nov;184(11):6855-68. doi: 10.1007/s10661-011-2463-2. Epub 2011 Dec 7.

Abstract

Principal component analysis (PCA) is capable of handling large sets of data. However, lack of consistent method in data pre-treatment and its importance are the limitations in PCA applications. This study examined pre-treatments methods (log (x + 1) transformation, outlier removal, and granulometric and geochemical normalization) on dataset of Mengkabong Lagoon, Sabah, mangrove surface sediment at high and low tides. The study revealed that geochemical normalization using Al with outliers removal resulted in a better classification of the mangrove surface sediment than that outliers removal, granulometric normalization using clay and log (x + 1) transformation. PCA output using geochemical normalization with outliers removal demonstrated associations between environmental variables and tides of mangrove surface sediment, Mengkabong Lagoon, Sabah. The PCA outputs at high and low tides also provided to better interpret information about the sediment and its controlling factors in the intertidal zone. The study showed data pre-treatment method to be a useful procedure to standardize the datasets and reducing the influence of outliers.

摘要

主成分分析(PCA)能够处理大量数据集。然而,在 PCA 应用中,数据预处理方法缺乏一致性和重要性是其局限性。本研究检验了预处理方法(log(x+1)变换、异常值去除、粒度和地球化学归一化)在沙巴门邦咯岛红树林潮间带表层沉积物高、低潮位数据集上的应用。研究结果表明,与异常值去除、粘土粒度归一化和 log(x+1)变换相比,使用 Al 去除异常值进行地球化学归一化能更好地对红树林表层沉积物进行分类。使用异常值去除进行地球化学归一化的 PCA 输出结果表明,沙巴门邦咯岛红树林潮间带表层沉积物的环境变量与潮汐之间存在相关性。高低潮位的 PCA 输出结果也提供了更好的解释信息,了解潮间带沉积物及其控制因素。研究表明,数据预处理方法是一种标准化数据集和减少异常值影响的有用程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验