Suppr超能文献

自动估计压力相关的速率系数。

Automatic estimation of pressure-dependent rate coefficients.

机构信息

Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.

出版信息

Phys Chem Chem Phys. 2012 Jan 21;14(3):1131-55. doi: 10.1039/c1cp22765c. Epub 2011 Dec 7.

Abstract

A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information. Two aspects of this framework are discussed in detail. First, two methods of estimating the density of states of the species in the network are presented, including a new method based on characteristic functional group frequencies. Second, three methods of simplifying the full master equation model of the network to a single set of phenomenological rates are discussed, including a new method based on the reservoir state and pseudo-steady state approximations. Both sets of methods are evaluated in the context of the chemically-activated reaction of acetyl with oxygen. All three simplifications of the master equation are usually accurate, but each fails in certain situations, which are discussed. The new methods usually provide good accuracy at a computational cost appropriate for automated reaction mechanism generation.

摘要

提出了一个通用框架,仅使用高压极限信息即可准确高效地估计任意大小和复杂程度的反应网络的现象学压力相关速率系数。详细讨论了该框架的两个方面。首先,提出了两种估计网络中物种态密度的方法,包括一种基于特征官能团频率的新方法。其次,讨论了将网络的完整主方程模型简化为一组唯象速率的三种方法,包括一种基于储库状态和准稳态近似的新方法。这两组方法都在乙酰与氧的化学激活反应的背景下进行了评估。主方程的所有三种简化通常都是准确的,但每种方法在某些情况下都会失效,这些情况将进行讨论。新方法通常以适合自动反应机制生成的计算成本提供良好的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验