Suppr超能文献

一种用于小体积反应动力学的有效速率方程方法:在非平衡稳态条件下用于生化反应的理论和应用。

An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

机构信息

School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.

出版信息

J Chem Phys. 2010 Jul 21;133(3):035101. doi: 10.1063/1.3454685.

Abstract

Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the regions of parameter space in which there are maximum differences between the solutions of the master equation and the corresponding rate equations. We show that these differences depend sensitively on the Fano factors and on the inherent structure and topology of the chemical network. The theory of effective mesoscopic rate equations generalizes the conventional rate equations of physical chemistry to describe kinetics in systems of mesoscopic size such as biological cells.

摘要

化学主方程为均相条件下的随机反应动力学提供了数学描述。它们在比反应平均自由程大的长度尺度上是有效的描述,因此可以描述介观和宏观尺寸隔室中的动力学。主方程所描述的随机化学过程的轨迹可以进行系综平均,以获得任何感兴趣的空间尺度上化学物质的平均数密度,即真实浓度。对于宏观体积,真实浓度非常接近相应的确定性和宏观速率方程的解,即宏观浓度。然而,这种等价性在介观体积下会失效。这些偏差对于开放系统特别显著,并且不能通过主方程的福克-普朗克或线性噪声近似来计算。我们利用包括欧米茄(-1/2)阶项的系统尺寸展开来推导出一组微分方程,其解近似于由主方程给出的真实浓度。这些方程在任何开放或封闭的化学反应网络中以及在介观和宏观尺度上都是有效的。在大体积的极限下,有效介观速率方程精确地等于传统的宏观速率方程。我们通过将其应用于几个生化反应系统(同源二聚体和异源二聚体蛋白质-蛋白质相互作用、一系列连续的酶反应和正反馈回路)在非平衡稳态条件下来比较有效介观速率方程、传统速率方程和化学主方程的三个形式。在所有情况下,我们发现有效介观速率方程可以很好地预测化学物质的真实浓度。这提供了一种有用的方法,可以快速确定主方程和相应的速率方程的解之间存在最大差异的参数空间区域。我们表明,这些差异对福克系数以及化学网络的固有结构和拓扑结构敏感地依赖。有效介观速率方程的理论将物理化学的传统速率方程推广到描述介观大小的系统中的动力学,例如生物细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验