Suppr超能文献

人胰高血糖素样肽-1 受体 (GLP-1R) 的第二细胞外环在 GLP-1 肽结合和受体激活中起关键作用。

Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation.

机构信息

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia.

出版信息

J Biol Chem. 2012 Feb 3;287(6):3642-58. doi: 10.1074/jbc.M111.309328. Epub 2011 Dec 6.

Abstract

The glucagon-like peptide-1 receptor (GLP-1R) is a therapeutically important family B G protein-coupled receptor (GPCR) that is pleiotropically coupled to multiple signaling effectors and, with actions including regulation of insulin biosynthesis and secretion, is one of the key targets in the management of type II diabetes mellitus. However, there is limited understanding of the role of the receptor core in orthosteric ligand binding and biological activity. To assess involvement of the extracellular loop (ECL) 2 in ligand-receptor interactions and receptor activation, we performed alanine scanning mutagenesis of loop residues and assessed the impact on receptor expression and GLP-1(1-36)-NH(2) or GLP-1(7-36)-NH(2) binding and activation of three physiologically relevant signaling pathways as follows: cAMP formation, intracellular Ca(2+) (Ca(2+)(i)) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). Although antagonist peptide binding was unaltered, almost all mutations affected GLP-1 peptide agonist binding and/or coupling efficacy, indicating an important role in receptor activation. However, mutation of several residues displayed distinct pathway responses with respect to wild type receptor, including Arg-299 and Tyr-305, where mutation significantly enhanced both GLP-1(1-36)-NH(2)- and GLP-1(7-36)-NH(2)-mediated signaling bias for pERK1/2. In addition, mutation of Cys-296, Trp-297, Asn-300, Asn-302, and Leu-307 significantly increased GLP-1(7-36)-NH(2)-mediated signaling bias toward pERK1/2. Of all mutants studied, only mutation of Trp-306 to alanine abolished all biological activity. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition(s) of the receptor and the importance of this region in the determination of both GLP-1 peptide- and pathway-specific effects.

摘要

胰高血糖素样肽-1 受体(GLP-1R)是一种治疗上重要的 B 族 G 蛋白偶联受体(GPCR),它与多种信号效应器呈多效性偶联,其作用包括调节胰岛素的生物合成和分泌,是 2 型糖尿病管理的关键靶点之一。然而,对于受体核心在变构配体结合和生物学活性中的作用,我们的了解还很有限。为了评估 ECL2 环在配体-受体相互作用和受体激活中的作用,我们对环残基进行了丙氨酸扫描诱变,并评估了其对受体表达以及 GLP-1(1-36)-NH2 或 GLP-1(7-36)-NH2 结合和三种生理相关信号通路的激活的影响,如下所示:cAMP 形成、细胞内 Ca2+(Ca2+(i))动员和细胞外信号调节激酶 1 和 2(pERK1/2)的磷酸化。尽管拮抗剂肽结合没有改变,但几乎所有突变都影响 GLP-1 肽激动剂结合和/或偶联效力,表明其在受体激活中起重要作用。然而,与野生型受体相比,几个残基的突变显示出不同的通路反应,包括 Arg-299 和 Tyr-305,其中突变显著增强了 GLP-1(1-36)-NH2-和 GLP-1(7-36)-NH2-介导的 pERK1/2 信号偏倚。此外,Cys-296、Trp-297、Asn-300、Asn-302 和 Leu-307 的突变显著增加了 GLP-1(7-36)-NH2-介导的向 pERK1/2 的信号偏倚。在研究的所有突变体中,只有突变 Trp-306 为丙氨酸完全消除了所有的生物学活性。这些数据表明,GLP-1R 的 ECL2 在受体的激活转变中起着关键作用,并且该区域在确定 GLP-1 肽和途径特异性效应方面都很重要。

相似文献

5
Ligand binding pocket formed by evolutionarily conserved residues in the glucagon-like peptide-1 (GLP-1) receptor core domain.
J Biol Chem. 2015 Feb 27;290(9):5696-706. doi: 10.1074/jbc.M114.612606. Epub 2015 Jan 5.
7
Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R).
J Biol Chem. 2016 Jun 17;291(25):12991-3004. doi: 10.1074/jbc.M116.721977. Epub 2016 Apr 8.
10
Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18607-12. doi: 10.1073/pnas.1205227109. Epub 2012 Oct 22.

引用本文的文献

1
New Insights into the Structure and Function of Class B1 GPCRs.
Endocr Rev. 2023 May 8;44(3):492-517. doi: 10.1210/endrev/bnac033.
2
Effects of site-directed mutagenesis of GLP-1 and glucagon receptors on signal transduction activated by dual and triple agonists.
Acta Pharmacol Sin. 2023 Feb;44(2):421-433. doi: 10.1038/s41401-022-00962-y. Epub 2022 Aug 11.
3
Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation.
Nat Commun. 2022 Jan 10;13(1):92. doi: 10.1038/s41467-021-27760-0.
4
Advances in therapeutic peptides targeting G protein-coupled receptors.
Nat Rev Drug Discov. 2020 Jun;19(6):389-413. doi: 10.1038/s41573-020-0062-z. Epub 2020 Mar 19.
6
The Molecular Control of Calcitonin Receptor Signaling.
ACS Pharmacol Transl Sci. 2019 Jan 11;2(1):31-51. doi: 10.1021/acsptsci.8b00056. eCollection 2019 Feb 8.
7
Structural Basis for Allosteric Modulation of Class B G Protein-Coupled Receptors.
Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:89-107. doi: 10.1146/annurev-pharmtox-010919-023301. Epub 2019 Aug 27.
8
Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury.
ACS Pharmacol Transl Sci. 2019 Apr 12;2(2):66-91. doi: 10.1021/acsptsci.9b00003. Epub 2019 Feb 11.
9
Multivalent activation of GLP-1 and sulfonylurea receptors modulates β-cell second-messenger signaling and insulin secretion.
Am J Physiol Cell Physiol. 2019 Jan 1;316(1):C48-C56. doi: 10.1152/ajpcell.00209.2018. Epub 2018 Nov 7.
10
High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening.
Chem Sci. 2018 Feb 20;9(12):3192-3199. doi: 10.1039/c7sc04698g. eCollection 2018 Mar 28.

本文引用的文献

1
Crystal structure of the β2 adrenergic receptor-Gs protein complex.
Nature. 2011 Jul 19;477(7366):549-55. doi: 10.1038/nature10361.
2
Structure of the human histamine H1 receptor complex with doxepin.
Nature. 2011 Jun 22;475(7354):65-70. doi: 10.1038/nature10236.
4
Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling.
J Biol Chem. 2011 May 6;286(18):15895-907. doi: 10.1074/jbc.M110.217901. Epub 2011 Mar 16.
5
Importance of each residue within secretin for receptor binding and biological activity.
Biochemistry. 2011 Apr 12;50(14):2983-93. doi: 10.1021/bi200133u. Epub 2011 Mar 21.
6
Structure and function of an irreversible agonist-β(2) adrenoceptor complex.
Nature. 2011 Jan 13;469(7329):236-40. doi: 10.1038/nature09665.
7
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.
8
Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist.
Science. 2010 Nov 19;330(6007):1091-5. doi: 10.1126/science.1197410.
9
Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.
Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验