Suppr超能文献

设计和评估多功能纳米载体,用于辅酶 Q10 向线粒体的选择性递送。

Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria.

机构信息

Department of Chemistry, McGill University, Montreal, Quebec, H3A 2K6, Canada.

出版信息

Biomacromolecules. 2012 Jan 9;13(1):239-52. doi: 10.1021/bm201538j. Epub 2011 Dec 16.

Abstract

Impairments of mitochondrial functions have been associated with failure of cellular functions in different tissues, leading to various pathologies. We report here a mitochondria-targeted nanodelivery system for coenzyme Q10 (CoQ10) that can reach mitochondria and deliver CoQ10 in adequate quantities. Multifunctional nanocarriers based on ABC miktoarm polymers (A = poly(ethylene glycol (PEG), B = polycaprolactone (PCL), and C = triphenylphosphonium bromide (TPPBr)) were synthesized using a combination of click chemistry with ring-opening polymerization, self-assembled into nanosized micelles, and were employed for CoQ10 loading. Drug loading capacity (60 wt %), micelle size (25-60 nm), and stability were determined using a variety of techniques. The micelles had a small critical association concentration and were colloidally stable in solution for more than 3 months. The extraordinarily high CoQ10 loading capacity in the micelles is attributed to good compatibility between CoQ10 and PCL, as indicated by the low Flory-Huggins interaction parameter. Confocal microscopy studies of the fluorescently labeled polymer analog together with the mitochondria-specific vital dye label indicated that the carrier did indeed reach mitochondria. The high CoQ10 loading efficiency allowed testing of micelles within a broad concentration range and provided evidence for CoQ10 effectiveness in two different experimental paradigms: oxidative stress and inflammation. Combined results from chemical, analytical, and biological experiments suggest that the new miktoarm-based carrier provides a suitable means of CoQ10 delivery to mitochondria without loss of drug effectiveness. The versatility of the click chemistry used to prepare this new mitochondria-targeting nanocarrier offers a widely applicable, simple, and easily reproducible procedure to deliver drugs to mitochondria or other intracellular organelles.

摘要

线粒体功能障碍与不同组织中细胞功能的衰竭有关,导致各种病理。我们在这里报告了一种针对辅酶 Q10(CoQ10)的线粒体靶向纳米递药系统,该系统可以到达线粒体并输送足够数量的 CoQ10。基于 ABC 型多臂聚合物(A = 聚乙二醇(PEG),B = 聚己内酯(PCL)和 C = 三苯基膦溴化物(TPPBr))的多功能纳米载体是通过点击化学与开环聚合相结合合成的,自组装成纳米尺寸的胶束,并用于负载 CoQ10。使用多种技术确定了药物载量(60wt%)、胶束尺寸(25-60nm)和稳定性。胶束具有较小的临界聚集浓度,在溶液中超过 3 个月仍保持胶体稳定。胶束中 CoQ10 的超高负载能力归因于 CoQ10 与 PCL 之间的良好相容性,如低 Flory-Huggins 相互作用参数所示。荧光标记聚合物类似物的共焦显微镜研究以及线粒体特异性活染料标记表明载体确实到达了线粒体。高 CoQ10 负载效率允许在较宽的浓度范围内测试胶束,并为 CoQ10 在两种不同实验范例中的有效性提供了证据:氧化应激和炎症。化学、分析和生物学实验的综合结果表明,基于新型多臂的载体为 CoQ10 向线粒体的输送提供了一种合适的方法,而不会损失药物的有效性。用于制备这种新的线粒体靶向纳米载体的点击化学的多功能性提供了一种广泛适用、简单且易于重现的向线粒体或其他细胞内细胞器输送药物的方法。

相似文献

1
Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria.
Biomacromolecules. 2012 Jan 9;13(1):239-52. doi: 10.1021/bm201538j. Epub 2011 Dec 16.
2
PEGylated Solanesol for Oral Delivery of Coenzyme Q.
J Agric Food Chem. 2017 Apr 26;65(16):3360-3367. doi: 10.1021/acs.jafc.7b00165. Epub 2017 Apr 18.
3
Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers.
Biomaterials. 2010 Nov;31(32):8382-92. doi: 10.1016/j.biomaterials.2010.07.039. Epub 2010 Aug 5.
4
Kolliphor® HS 15 Micelles for the Delivery of Coenzyme Q10: Preparation, Characterization, and Stability.
AAPS PharmSciTech. 2016 Jun;17(3):757-66. doi: 10.1208/s12249-015-0399-5. Epub 2015 Sep 4.
6
Mitochondria-targeted CoQ loaded PLGA-b-PEG-TPP nanoparticles: Their effects on mitochondrial functions of COQ8B HK-2 cells.
Eur J Pharm Biopharm. 2022 Apr;173:22-33. doi: 10.1016/j.ejpb.2022.02.018. Epub 2022 Feb 26.
7
Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria.
Drug Deliv Transl Res. 2024 Jan;14(1):191-207. doi: 10.1007/s13346-023-01392-x. Epub 2023 Aug 9.

引用本文的文献

1
The evolution of ABC star polymers: from trial-and-error to rational design.
RSC Adv. 2025 Aug 4;15(34):27700-27722. doi: 10.1039/d5ra03730a. eCollection 2025 Aug 1.
3
Engineering metabolism to modulate immunity.
Adv Drug Deliv Rev. 2024 Jan;204:115122. doi: 10.1016/j.addr.2023.115122. Epub 2023 Nov 5.
4
The progress of research on the application of redox nanomaterials in disease therapy.
Front Chem. 2023 Feb 6;11:1115440. doi: 10.3389/fchem.2023.1115440. eCollection 2023.
5
Electrostimulus-triggered reactive oxygen species level in organelles revealed by organelle-targeting SERS nanoprobes.
Anal Bioanal Chem. 2022 Sep;414(23):6965-6975. doi: 10.1007/s00216-022-04265-3. Epub 2022 Aug 17.
6
Trends in the Design and Evaluation of Polymeric Nanocarriers: The In Vitro Nano-Bio Interactions.
Adv Exp Med Biol. 2022;1357:19-41. doi: 10.1007/978-3-030-88071-2_2.
8
Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment.
Adv Sci (Weinh). 2020 Dec 20;8(3):2002797. doi: 10.1002/advs.202002797. eCollection 2021 Feb.
9
Miktoarm Star Polymers: Branched Architectures in Drug Delivery.
Pharmaceutics. 2020 Aug 30;12(9):827. doi: 10.3390/pharmaceutics12090827.
10

本文引用的文献

1
Mitochondrial delivery of biologically active molecules.
Pharm Res. 2011 Nov;28(11):2633-8. doi: 10.1007/s11095-011-0588-1. Epub 2011 Sep 21.
2
Click chemistry for drug delivery nanosystems.
Pharm Res. 2012 Jan;29(1):1-34. doi: 10.1007/s11095-011-0568-5. Epub 2011 Sep 13.
3
From serendipity to mitochondria-targeted nanocarriers.
Pharm Res. 2011 Nov;28(11):2657-68. doi: 10.1007/s11095-011-0556-9. Epub 2011 Aug 11.
4
Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles.
Biomaterials. 2011 Oct;32(28):6860-74. doi: 10.1016/j.biomaterials.2011.05.079. Epub 2011 Jun 24.
5
Dendrimers and miktoarm polymers based multivalent nanocarriers for efficient and targeted drug delivery.
Chem Commun (Camb). 2011 Sep 14;47(34):9572-87. doi: 10.1039/c1cc11981h. Epub 2011 Jun 9.
7
Approaches for targeting mitochondria in cancer therapy.
Biochim Biophys Acta. 2011 Jun;1807(6):689-96. doi: 10.1016/j.bbabio.2010.08.008. Epub 2010 Aug 21.
8
Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers.
Biomaterials. 2010 Nov;31(32):8382-92. doi: 10.1016/j.biomaterials.2010.07.039. Epub 2010 Aug 5.
9
Antioxidant idebenone-loaded nanoparticles based on chitosan and N-carboxymethylchitosan.
Nanomedicine. 2010 Dec;6(6):745-52. doi: 10.1016/j.nano.2010.06.006. Epub 2010 Jul 3.
10
Multi-tasking with single platform dendrimers for targeting sub-cellular microenvironments.
Chemistry. 2010 Jun 1;16(21):6164-8. doi: 10.1002/chem.201000241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验