Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania.
J Phys Chem B. 2012 Jan 12;116(1):48-54. doi: 10.1021/jp208136g. Epub 2011 Dec 13.
The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.
研究了 1%至 4%浓度范围内 Laponite RD 的 2%聚乙二醇水溶液的粘弹性,通过振荡和流动测量在 15-40°C 的温度范围内进行。混合物中粘土含量的增加导致粘弹性模量的增加,并在设定温度下使流动从液态(麦克斯韦尔流体)转变为固态。与含有高浓度粘土的样品不同,低粘土浓度(1%和 2%)的混合物的最长松弛时间(τ(1))不受温度变化的影响,而在 30°C 以上和 17.5°C 以下,τ(1)增加。可以通过考虑布朗运动对这些分散体中形成的网络结构的影响以及高温下聚乙二醇在水中的溶解度差来解释高浓度粘土混合物的特征行为。确定并讨论了流动活化能。在 2%和 3% Laponite RD 之间,流动活化能明显增加。在不同的静止时间下进行的流变测量表明,当粘土浓度从 2%增加到 4%时,凝胶化时间从 1 周减少到 2 小时。在 25°C 下研究聚乙二醇/Laponite RD/水混合物的老化动力学,发现随着粘土浓度的增加,粘度速率动力学常数增加。
Langmuir. 2012-10-23
J Colloid Interface Sci. 2006-2-1
J Colloid Interface Sci. 2005-9-1
Molecules. 2024-6-13