文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Development of Hybrid Materials Based on Chitosan, Poly(Ethylene Glycol) and Laponite RD: Effect of Clay Concentration.

作者信息

Morariu Simona, Brunchi Cristina-Eliza, Honciuc Mirela, Iftime Manuela-Maria

机构信息

"Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania.

出版信息

Polymers (Basel). 2023 Feb 8;15(4):841. doi: 10.3390/polym15040841.


DOI:10.3390/polym15040841
PMID:36850125
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9959284/
Abstract

In the context of increasing interest in biomaterials with applicability in cosmetics and medicine, this research aims to obtain and characterize some hybrid materials based on chitosan (CS) (antibacterial, biocompatible, and biodegradable), poly(ethylene glycol) (PEG) (non-toxic and prevents the adsorption of protein and cell) and Laponite RD (Lap) (bioactive). The rheological properties of the starting dispersions were investigated and discussed related to the interactions developed between components. All samples exhibited gel-like properties, and the storage modulus of CS/PEG dispersion increased from 6.6 Pa to 657.7 Pa by adding 2.5% Lap. Structural and morphological characterization of the films, prepared by solution casting method, was performed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and polarized light microscopy (POM). These analyses proved the incorporation of Lap into CS/PEG films and revealed the morphological changes of the films by the addition of clay. Thereby, at the highest Lap concentration (43.8%), the "house of cards" structure formed by Lap platelets, which incorporate chitosan chains, as evidenced by SEM and POM. Two stages of degradation between 200 °C and 410 °C were evidenced for the films with Lap concentration higher than 38.5%, explained by the existence of a clay-rich phase (given by the clay network) and chitosan-rich one (due to the intercalation of chitosan in the clay network). CS/PEG film with 43.8% Lap showed the highest swelling degree of 240.7%. The analysis of the obtained results led to the conclusion that the addition of clay to the CS/PEG films increases their stability in water and gives them greater thermal stability.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/0df056c43945/polymers-15-00841-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/37182192f859/polymers-15-00841-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/e47734c40209/polymers-15-00841-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/b7a7659b55ab/polymers-15-00841-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/190e38685656/polymers-15-00841-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/d9114b9a4242/polymers-15-00841-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/34bd728c9075/polymers-15-00841-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/6cb1f96eba36/polymers-15-00841-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/2f2465186c85/polymers-15-00841-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/6ca071b8adfb/polymers-15-00841-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/0df056c43945/polymers-15-00841-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/37182192f859/polymers-15-00841-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/e47734c40209/polymers-15-00841-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/b7a7659b55ab/polymers-15-00841-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/190e38685656/polymers-15-00841-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/d9114b9a4242/polymers-15-00841-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/34bd728c9075/polymers-15-00841-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/6cb1f96eba36/polymers-15-00841-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/2f2465186c85/polymers-15-00841-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/6ca071b8adfb/polymers-15-00841-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc3/9959284/0df056c43945/polymers-15-00841-g009.jpg

相似文献

[1]
Development of Hybrid Materials Based on Chitosan, Poly(Ethylene Glycol) and Laponite RD: Effect of Clay Concentration.

Polymers (Basel). 2023-2-8

[2]
Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/Laponite RD dispersions.

J Phys Chem B. 2011-12-13

[3]
Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application.

Colloids Surf B Biointerfaces. 2009-11-10

[4]
Hydroxyapatite grafted chitosan/laponite RD hydrogel: Evaluation of the encapsulation capacity, pH-responsivity, and controlled release behavior.

Int J Biol Macromol. 2021-11-1

[5]
Rheological and thermal properties of polylactide/silicate nanocomposites films.

J Food Sci. 2010-3

[6]
Preferential adsorption of poly(ethylene glycol) on hectorite clay and effects on poly(N-isopropylacrylamide)/hectorite nanocomposite hydrogels.

Langmuir. 2010-3-16

[7]
Nanocomposite Films of Laponite/PEG-Grafted Polymers and Polymer Brushes with Nonfouling Properties.

Langmuir. 2017-6-27

[8]
Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications.

Int J Biol Macromol. 2020-5-15

[9]
Nanocomposite gels of poloxamine and Laponite for β-Lapachone release in anticancer therapy.

Eur J Pharm Sci. 2021-8-1

[10]
Design of interpenetrating chitosan and poly(ethylene glycol) sponges for potential drug delivery applications.

Carbohydr Polym. 2017-4-25

引用本文的文献

[1]
Effects of Zinc-Layered Filler Incorporation Routes on the Antimicrobial, Mechanical, and Physical Properties of Calcium Caseinate Biopolymeric Films.

Molecules. 2025-8-7

[2]
Tunable physical properties and dye removal application of novel Chitosan Polyethylene glycol and polypyrrole/carbon black films.

Sci Rep. 2025-6-20

[3]
In Vitro Assessment of Chitosan-PEG Hydrogels Enriched with MSCs-Exosomes for Enhancing Wound Healing.

Macromol Biosci. 2025-5

[4]
Laponite-From Dispersion to Gel-Structure, Properties, and Applications.

Molecules. 2024-6-13

[5]
Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application.

J Funct Biomater. 2023-8-5

本文引用的文献

[1]
Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review.

Heliyon. 2022-8-15

[2]
Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications.

Nanomaterials (Basel). 2022-5-27

[3]
Preparation of chitosan/tannin and montmorillonite films as adsorbents for Methyl Orange dye removal.

Int J Biol Macromol. 2022-6-15

[4]
Fabrication of CuZnSnS Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications.

Materials (Basel). 2022-2-24

[5]
Novel chitosan-based nanocomposites as ecofriendly pesticide carriers: Synthesis, root rot inhibition and growth management of tomato plants.

Carbohydr Polym. 2022-4-15

[6]
Effect of Varying Amount of Polyethylene Glycol (PEG-600) and 3-Aminopropyltriethoxysilane on the Properties of Chitosan based Reverse Osmosis Membranes.

Int J Mol Sci. 2021-2-25

[7]
Sustainable coating material based on chitosan-clay composite and paraffin wax for slow-release DAP fertilizer.

Int J Biol Macromol. 2020-10-15

[8]
Versatile poly(vinyl alcohol)/clay physical hydrogels with tailorable structure as potential candidates for wound healing applications.

Mater Sci Eng C Mater Biol Appl. 2019-11-6

[9]
Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering.

Nat Commun. 2019-8-6

[10]
2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing.

Adv Mater. 2019-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索