National ESCA and Surface Analysis Center for Biomedical Problems, Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
Langmuir. 2012 Jan 31;28(4):2107-12. doi: 10.1021/la203907t. Epub 2011 Dec 22.
To fully develop techniques that provide an accurate description of protein structure at a surface, we must start with a relatively simple model system before moving to increasingly complex systems. In this study, X-ray photoelectron spectroscopy (XPS), sum frequency generation spectroscopy (SFG), near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to probe the orientation of Protein G B1 (6 kDa) immobilized onto both amine (NH(3)(+)) and carboxyl (COO(-)) functionalized gold. Previously, we have shown that we could successfully control orientation of a similar Protein G fragment via a cysteine-maleimide bond. In this investigation, to induce opposite end-on orientations, a charge distribution was created within the Protein G B1 fragment by first substituting specific negatively charged amino acids with neutral amino acids and then immobilizing the protein onto two oppositely charged self-assembled monolayer (SAM) surfaces (NH(3)(+) and COO(-)). Protein coverage, on both surfaces, was monitored by the change in the atomic % N, as determined by XPS. Spectral features within the SFG spectra, acquired for the protein adsorbed onto a NH(3)(+)-SAM surface, indicates that this electrostatic interaction does induce the protein to form an oriented monolayer on the SAM substrate. This corresponded to the polarization dependence of the spectral feature related to the NEXAFS N(1s)-to-π* transition of the β-sheet peptide bonds within the protein layer. ToF-SIMS data demonstrated a clear separation between the two samples based on the intensity differences of secondary ions stemming from amino acids located asymmetrically within Protein G B1 (methionine: 62 and 105 m/z; tyrosine: 107 and 137 m/z; leucine: 86 m/z). For a more quantitative examination of orientation, we developed a ratio comparing the sum of the intensities of secondary-ions stemming from the amino acid residues at either end of the protein. The 2-fold increase in this ratio, observed between the protein covered NH(3)(+) and COO(-) SAMs, indicates opposite orientations of the Protein G B1 fragment on the two different surfaces.
为了充分开发能够准确描述蛋白质表面结构的技术,我们必须在移动到越来越复杂的系统之前,从相对简单的模型系统开始。在这项研究中,我们使用 X 射线光电子能谱(XPS)、和频产生光谱(SFG)、近边 X 射线吸收精细结构(NEXAFS)光谱和飞行时间二次离子质谱(ToF-SIMS)来探测固定在氨基(NH3+)和羧基(COO-)功能化金上的蛋白质 G B1(6 kDa)的取向。以前,我们已经表明我们可以通过半胱氨酸-马来酰亚胺键成功控制类似的蛋白质 G 片段的取向。在这项研究中,为了诱导相反的端到端取向,我们首先用中性氨基酸取代特定的带负电荷的氨基酸,然后将蛋白质固定在两个带相反电荷的自组装单层(SAM)表面(NH3+和 COO-)上,在蛋白质 G B1 片段中创建了电荷分布。通过 XPS 测定的原子%N 的变化来监测两种表面上的蛋白质覆盖率。在吸附在 NH3+-SAM 表面上的蛋白质的 SFG 光谱中获得的光谱特征表明,这种静电相互作用确实会诱导蛋白质在 SAM 基底上形成定向单层。这与与蛋白质层中的β-折叠肽键的 NEXAFS N(1s)-π*跃迁相关的光谱特征的偏振依赖性相对应。ToF-SIMS 数据基于源自蛋白质 G B1 中不对称定位的氨基酸的二次离子的强度差异,清楚地分离了两种样品。(甲硫氨酸:62 和 105 m/z;酪氨酸:107 和 137 m/z;亮氨酸:86 m/z)。为了更定量地检查取向,我们开发了一个比率,比较源自蛋白质两端的氨基酸残基的二次离子强度总和。在覆盖有 NH3+和 COO-的 SAM 之间观察到的这个比率的 2 倍增加表明蛋白质 G B1 片段在两个不同表面上的相反取向。