Suppr超能文献

跌倒检测中的自动个体校准——一个综合的动态测量框架。

Automatic individual calibration in fall detection--an integrative ambulatory measurement framework.

作者信息

Liu Jian, Lockhart Thurmon E

机构信息

Health and Human Performance, University of Houston, 104 GAR, 3855 Holman St., Houston, TX 77204-6015, USA.

出版信息

Comput Methods Biomech Biomed Engin. 2013;16(5):504-10. doi: 10.1080/10255842.2011.627329. Epub 2011 Dec 8.

Abstract

The objective of the current study was to demonstrate the utility of a new integrative ambulatory measurement (IAM) framework by developing and evaluating an individual calibration function in fall detection application. Ten healthy elderly persons were involved in a laboratory study and tested in a protocol comprising various types of activities of daily living and slip-induced backward falls. Inertial measurement units attached to the trunk and thigh segments were used to measure trunk angular kinematics and thigh accelerations. The effect of individual calibration was evaluated with previously developed fall detection algorithm. The results indicated that with individual calibration, the fall detection performance achieved approximately the same level of sensitivity (100% vs. 100%) and specificity (95.25% vs. 95.65%); however, response time was significantly lower than without (249 ms vs. 255 ms). It was concluded that the automatic individual calibration using the IAM framework improves the performance of fall detection, which has a greater implication in preventing/minimising injuries associated with fall accidents.

摘要

本研究的目的是通过在跌倒检测应用中开发和评估个体校准函数,来证明一种新的综合动态测量(IAM)框架的实用性。十名健康老年人参与了一项实验室研究,并按照包含各种日常生活活动和滑倒诱发的向后跌倒的方案进行测试。附着在躯干和大腿部位的惯性测量单元用于测量躯干角运动学和大腿加速度。使用先前开发的跌倒检测算法评估个体校准的效果。结果表明,经过个体校准后,跌倒检测性能达到了大致相同的灵敏度水平(100% 对 100%)和特异性水平(95.25% 对 95.65%);然而,响应时间显著低于未校准时(249毫秒对255毫秒)。得出的结论是,使用IAM框架进行自动个体校准可提高跌倒检测性能,这对于预防/最小化与跌倒事故相关的伤害具有更大的意义。

相似文献

1
Automatic individual calibration in fall detection--an integrative ambulatory measurement framework.
Comput Methods Biomech Biomed Engin. 2013;16(5):504-10. doi: 10.1080/10255842.2011.627329. Epub 2011 Dec 8.
2
Development and evaluation of a prior-to-impact fall event detection algorithm.
IEEE Trans Biomed Eng. 2014 Jul;61(7):2135-40. doi: 10.1109/TBME.2014.2315784. Epub 2014 Apr 4.
4
Trunk angular kinematics during slip-induced backward falls and activities of daily living.
J Biomech Eng. 2014 Oct;136(10):101005. doi: 10.1115/1.4028033.
5
Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm.
Gait Posture. 2007 Jul;26(2):194-9. doi: 10.1016/j.gaitpost.2006.09.012. Epub 2006 Nov 13.
6
The design and development of a long-term fall detection system incorporated into a custom vest for the elderly.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2836-9. doi: 10.1109/IEMBS.2008.4649793.
7
A wearable system for pre-impact fall detection.
J Biomech. 2008 Dec 5;41(16):3475-81. doi: 10.1016/j.jbiomech.2008.08.009. Epub 2008 Nov 8.
8
Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3712-3715. doi: 10.1109/EMBC.2016.7591534.
9
Determination of simple thresholds for accelerometry-based parameters for fall detection.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1367-70. doi: 10.1109/IEMBS.2007.4352552.
10
Assessment of waist-worn tri-axial accelerometer based fall-detection algorithms using continuous unsupervised activities.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2782-5. doi: 10.1109/IEMBS.2010.5626364.

引用本文的文献

1
Machine Learning Enables Rapid Detection of Slips Using a Robotic Hip Exoskeleton.
IEEE Trans Med Robot Bionics. 2025 May;7(2):666-677. doi: 10.1109/tmrb.2025.3560331. Epub 2025 Apr 14.
2
Pre-impact fall detection.
Biomed Eng Online. 2016 Jun 1;15(1):61. doi: 10.1186/s12938-016-0194-x.
3
Involvement of older people in the development of fall detection systems: a scoping review.
BMC Geriatr. 2016 Feb 11;16:42. doi: 10.1186/s12877-016-0216-3.
4
The Effect of Personalization on Smartphone-Based Fall Detectors.
Sensors (Basel). 2016 Jan 18;16(1):117. doi: 10.3390/s16010117.
5
Feature Selection and Predictors of Falls with Foot Force Sensors Using KNN-Based Algorithms.
Sensors (Basel). 2015 Nov 20;15(11):29393-407. doi: 10.3390/s151129393.
6
Detecting falls with wearable sensors using machine learning techniques.
Sensors (Basel). 2014 Jun 18;14(6):10691-708. doi: 10.3390/s140610691.
7
Development and evaluation of a prior-to-impact fall event detection algorithm.
IEEE Trans Biomed Eng. 2014 Jul;61(7):2135-40. doi: 10.1109/TBME.2014.2315784. Epub 2014 Apr 4.

本文引用的文献

1
Development and evaluation of a prior-to-impact fall event detection algorithm.
IEEE Trans Biomed Eng. 2014 Jul;61(7):2135-40. doi: 10.1109/TBME.2014.2315784. Epub 2014 Apr 4.
2
Age-related joint moment characteristics during normal gait and successful reactive-recovery from unexpected slip perturbations.
Gait Posture. 2009 Oct;30(3):276-81. doi: 10.1016/j.gaitpost.2009.04.005. Epub 2009 Jul 5.
3
Differentiating fall-prone and healthy adults using local dynamic stability.
Ergonomics. 2008 Dec;51(12):1860-72. doi: 10.1080/00140130802567079.
4
Protection against impact with the ground using wearable airbags.
Ind Health. 2008 Jan;46(1):59-65. doi: 10.2486/indhealth.46.59.
5
Investigation of fall-risk using a wearable device with accelerometers and rate gyroscopes.
Physiol Meas. 2006 Nov;27(11):1081-90. doi: 10.1088/0967-3334/27/11/003. Epub 2006 Sep 11.
6
Ambulatory measurement of arm orientation.
J Biomech. 2007;40(1):78-85. doi: 10.1016/j.jbiomech.2005.11.011. Epub 2006 Feb 7.
7
Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring.
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):156-67. doi: 10.1109/titb.2005.856864.
8
Distinguishing fall activities from normal activities by angular rate characteristics and high-speed camera characterization.
Med Eng Phys. 2006 Oct;28(8):842-9. doi: 10.1016/j.medengphy.2005.11.008. Epub 2006 Jan 6.
9
The technology of accelerometry-based activity monitors: current and future.
Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S490-500. doi: 10.1249/01.mss.0000185571.49104.82.
10
A description of an accelerometer-based mobility monitoring technique.
Med Eng Phys. 2005 Jul;27(6):497-504. doi: 10.1016/j.medengphy.2004.11.006. Epub 2005 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验