Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA.
J Chem Phys. 2011 Dec 7;135(21):214903. doi: 10.1063/1.3664623.
A coarse-grained (CG) model of polyethylene glycol (PEG) was developed and implemented in CG molecular dynamics (MD) simulations of PEG chains with degree of polymerization (DP) 20 and 40. In the model, two repeat units of PEG are grouped as one CG bead. Atomistic MD simulation of PEG chains with DP = 20 was first conducted to obtain the bonded structural probability distribution functions (PDFs) and nonbonded pair correlation function (PCF) of the CG beads. The bonded CG potentials are obtained by simple inversion of the corresponding PDFs. The CG nonbonded potential is parameterized to the PCF using both an inversion procedure based on the Ornstein-Zernike equation with the Percus-Yevick approximation (OZPY(-1)) and a combination of OZPY(-1) with the iterative Boltzmann inversion (IBI) method (OZPY(-1)+IBI). As a simple one step method, the OZPY(-1) method possesses an advantage in computational efficiency. Using the potential from OZPY(-1) as an initial guess, the IBI method shows fast convergence. The coarse-grained molecular dynamics (CGMD) simulations of PEG chains with DP = 20 using potentials from both methods satisfactorily reproduce the structural properties from atomistic MD simulation of the same systems. The OZPY(-1)+IBI method yields better agreement than the OZPY(-1) method alone. The new CG model and CG potentials from OZPY(-1)+IBI method was further tested through CGMD simulation of PEG with DP = 40 system. No significant changes are observed in the comparison of PCFs from CGMD simulations of PEG with DP = 20 and 40 systems indicating that the potential is independent of chain length.
开发了一种聚乙二醇(PEG)的粗粒化(CG)模型,并将其应用于聚合度(DP)为 20 和 40 的 PEG 链的 CG 分子动力学(MD)模拟中。在该模型中,PEG 的两个重复单元被组合成一个 CG 珠。首先对 DP = 20 的 PEG 链进行原子 MD 模拟,以获得 CG 珠的键合结构概率分布函数(PDF)和非键对相关函数(PCF)。通过对相应 PDF 的简单反演获得 CG 键合势。通过基于 Ornstein-Zernike 方程和 Percus-Yevick 近似(OZPY(-1))的反转过程以及 OZPY(-1)与迭代 Boltzmann 反转(IBI)方法(OZPY(-1)+IBI)的组合,将 CG 非键合势参数化到 PCF 中。作为一种简单的一步法,OZPY(-1)方法在计算效率方面具有优势。使用 OZPY(-1) 中的势作为初始猜测,IBI 方法具有快速收敛的特点。使用两种方法的势进行 DP = 20 的 PEG 链的 CGMD 模拟,令人满意地再现了相同体系的原子 MD 模拟的结构性质。OZPY(-1)+IBI 方法比单独的 OZPY(-1)方法产生更好的一致性。进一步通过 DP = 40 的 PEG 的 CGMD 模拟对 OZPY(-1)+IBI 方法的新 CG 模型和 CG 势进行了测试。在 DP = 20 和 40 的 PEG 系统的 CGMD 模拟的 PCF 比较中没有观察到明显的变化,这表明该势与链长无关。