Suppr超能文献

自底向上粗粒化:原理与展望。

Bottom-up Coarse-Graining: Principles and Perspectives.

机构信息

Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

出版信息

J Chem Theory Comput. 2022 Oct 11;18(10):5759-5791. doi: 10.1021/acs.jctc.2c00643. Epub 2022 Sep 7.

Abstract

Large-scale computational molecular models provide scientists a means to investigate the effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship between variations on the molecular scale and macroscopic observable properties facilitates an understanding of the molecular interactions driving the properties of real world materials and complex systems (e.g., those found in biology, chemistry, and materials science). As a result, discovering an explicit, systematic connection between microscopic nature and emergent mesoscopic behavior is a fundamental goal for this type of investigation. The molecular forces critical to driving the behavior of complex heterogeneous systems are often unclear. More problematically, simulations of representative model systems are often prohibitively expensive from both spatial and temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained (CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior. However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by (i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing these approximations.

摘要

大规模计算分子模型为科学家提供了一种方法,可以研究微观细节对涌现的介观行为的影响。阐明分子尺度上的变化与宏观可观察性质之间的关系,有助于理解驱动实际材料和复杂系统(例如生物学、化学和材料科学中的系统)性质的分子相互作用。因此,发现微观本质与涌现的介观行为之间的明确、系统的联系是这种研究的一个基本目标。驱动复杂多相系统行为的关键分子力通常不明确。更成问题的是,代表性模型系统的模拟从时空角度来看往往非常昂贵,阻碍了对描述分子行为的可能假设的直接研究。虽然研究分辨率的降低(例如,从原子模拟降低到大粗粒化 (CG) 组原子的分辨率)可以部分减轻单个模拟的成本,但所提出的微观细节与中间分辨率之间的关系并非微不足道,并且为研究带来了新的障碍。这些复杂系统的小部分可以逼真地模拟。单独来看,这些较小的模拟可能无法提供对集体涌现行为的深入了解。然而,通过提出较小和较大系统(包含许多较小系统的相关副本)中的驱动力具有明确的联系,可以使用系统的自下而上的 CG 技术将在较小规模系统中发现的 CG 假设转移到更感兴趣的较大系统中。不同 CG 系统之间的拟议连接由 (i) CG 表示(映射)和 (ii) 用于表示 CG 能学的函数形式和参数来规定,该能学近似平均力势 (PMF)。因此,设计促进各种物理相关表示、近似和力场的 CG 方法对于推动系统 CG 的前沿至关重要。至关重要的是,用于参数化的系统与感兴趣的系统之间的拟议连接与所有系统 CG 方法中用于近似平均力势的优化是正交的。机器学习技术在各种任务上的经验功效为考虑这些方法来逼近 PMF 和分析这些逼近提供了强有力的动机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f555/9558379/4e65e9ad5530/ct2c00643_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验