Suppr超能文献

使用 X 射线断层合成术定量测量胫股关节间隙。

Quantifying the tibiofemoral joint space using x-ray tomosynthesis.

机构信息

Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201.

出版信息

Med Phys. 2011 Dec;38(12):6672-82. doi: 10.1118/1.3662891.

Abstract

PURPOSE

Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets.

METHODS

A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients.

RESULTS

The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all trials. A linear fit estimated a slope of 0.887 (R² = 0.962) and a mean error across all trials of 0.34 mm for the PA phantom data. The estimated minimum JSW values for the lateral adjustable phantom acquisitions were found to have low correlation to the measured values (R² = 0.377), with a mean error of 2.13 mm. The error in the lateral adjustable-phantom datasets appeared to be caused by artifacts due to unrealistic features in the phantom bones. JSW maps generated by DTS and CT varied by a mean of 0.6 mm and 0.8 mm across the knee joint, for PA and lateral scans. The tibial and femoral edges were successfully segmented and JSW maps determined for PA and lateral clinical DTS datasets.

CONCLUSIONS

A semiautomated method is presented for quantifying the 3D joint space in a 2D JSW map using tomosynthesis images. The proposed algorithm quantified the JSW across the knee joint to sub-millimeter accuracy for PA tomosynthesis acquisitions. Overall, the results suggest that x-ray tomosynthesis may be beneficial for diagnosing and monitoring disease progression or treatment of osteoarthritis by providing quantitative images of JSW in the load-bearing knee.

摘要

目的

数字 X 射线断层合成术(DTS)有可能在承重姿势下提供膝关节的 3D 信息,与目前的护理标准——投影射线照相相比,这可能会改善膝关节骨关节炎的诊断和监测。从 3D 断层合成数据集手动定量和可视化关节间隙宽度(JSW)可能具有挑战性。本研究开发了一种从重建的 DTS 图像半自动定量 3D 胫股 JSW 的算法。通过人体模型实验对该算法进行了验证,并将其应用于三个临床数据集。

方法

在重建的 DTS 体数据内的用户选择的感兴趣体积通过 1D 多尺度梯度核进行增强。边缘增强的体积根据极性分为胫骨和股骨边缘图,并在核尺度上组合。使用二维连通分量算法确定候选的胫骨和股骨边缘。构建二维关节间隙宽度图(JSW)以表示 3D 胫股关节间隙。为了量化算法的准确性,构建了一个可调膝关节模型,并使用可调膝关节模型进行了十一次后前(PA)和外侧 DTS 扫描,将模型内侧最小 JSW 设置为 0-5mm,每隔 0.5mm 递增(VolumeRad™,GE Healthcare,英国奇尔弗斯圣吉尔斯)。通过比较感兴趣区域内的最小 JSW 值与每个试验的测量模型设置,定量评估算法的准确性。此外,该算法还应用于静态膝关节模型的 DTS 扫描,并将 JSW 图与手动分割的计算机断层扫描(CT)数据集估计的值进行了比较。该算法还应用于三个骨关节炎患者的临床 DTS 数据集。

结果

该算法对所有的模型和临床数据集进行了 JSW 分割并生成了 JSW 图。对于可调模型,将所有试验的估计最小 JSW 值与测量值绘制在一起。线性拟合估计斜率为 0.887(R²=0.962),所有试验的平均误差为 0.34mm。对于外侧可调模型采集的估计最小 JSW 值与测量值相关性较低(R²=0.377),平均误差为 2.13mm。外侧可调模型数据集的误差似乎是由于模型骨骼中不切实际的特征造成的伪影引起的。PA 和外侧扫描时,DTS 和 CT 生成的 JSW 图在整个膝关节上的差异平均为 0.6mm 和 0.8mm。成功地对 PA 和外侧临床 DTS 数据集的胫骨和股骨边缘进行了分割,并确定了 JSW 图。

结论

本文提出了一种使用断层合成图像在二维 JSW 图中定量 3D 关节间隙的半自动方法。所提出的算法以亚毫米的精度定量了膝关节的 JSW,适用于 PA 断层合成术采集。总的来说,结果表明 X 射线断层合成术通过提供负重膝关节 JSW 的定量图像,可能有助于诊断和监测骨关节炎的进展或治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验