Suppr超能文献

神经假体电刺激的机制。

Mechanisms of electrical stimulation with neural prostheses.

机构信息

TU-BioMed, Vienna University of Technology, Austria, University Institute for Clinical Neurophysiology, Ljubljana, Slovenia, Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.

出版信息

Neuromodulation. 2003 Jan;6(1):42-56. doi: 10.1046/j.1525-1403.2003.03006.x.

Abstract

Individual electric and geometric characteristics of neural substructures can have surprising effects on artificially controlled neural signaling. A rule of thumb approved for the stimulation of long peripheral axons may not hold when the central nervous system is involved. This is demonstrated here with a comparison of results from the electrically stimulated cochlea, retina, and spinal cord. A generalized form of the activating function together with accurate modeling of the neural membrane dynamics are the tools to analyze the excitation mechanisms initiated by neural prostheses. Analysis is sometimes possible with a linear theory, in other cases, simulation of internal calcium concentration or ion channel current fluctuations is needed to see irregularities in spike trains. Spike initiation site can easily change within a single target neuron under constant stimulation conditions of a cochlear implant. Poor myelinization in the soma region of the human cochlear neurons causes firing characteristics different from any animal data. Retinal ganglion cells also generate propagating spikes within the dendritic tree. Bipolar cells in the retina are expected to respond with neurotransmitter release before a spike is generated in the ganglion cell, even when they are far away from the electrode. Epidural stimulation of the lumbar spinal cord predominantly stimulates large sensory axons in the dorsal roots which induce muscle reflex responses. Analysis with the generalized activating function, computer simulations of the nonlinear neural membrane behavior together with experimental and clinical data analysis enlighten our understanding of artificial firing patterns influenced by neural prostheses.

摘要

神经亚结构的个体电和几何特性可能对人工控制的神经信号产生惊人的影响。当涉及中枢神经系统时,经证实,用于刺激长外周轴突的经验法则可能不再适用。这里通过比较耳蜗、视网膜和脊髓的电刺激结果来证明这一点。激活函数的广义形式以及神经膜动力学的精确建模是分析神经假体引发的兴奋机制的工具。在某些情况下,可以使用线性理论进行分析,而在其他情况下,则需要模拟内部钙浓度或离子通道电流波动,以观察尖峰列车中的不规则性。在耳蜗植入物的恒定刺激条件下,单个靶神经元内的尖峰起始位点很容易发生变化。人类耳蜗神经元胞体区域的髓鞘不良导致其发放特性与任何动物数据都不同。视网膜神经节细胞也会在树突中产生传播性尖峰。即使在远离电极的情况下,视网膜中的双极细胞也有望在神经节细胞产生尖峰之前通过神经递质释放来做出反应。腰骶脊髓硬膜外刺激主要刺激背根中的大感觉轴突,从而引起肌肉反射反应。使用广义激活函数进行分析、对非线性神经膜行为进行计算机模拟以及对实验和临床数据分析,使我们能够深入了解受神经假体影响的人工发放模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验