Suppr超能文献

三维像差校正扫描透射电子显微镜中最大轴向分辨率的优化反卷积。

Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy.

机构信息

Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615, USA.

出版信息

Microsc Microanal. 2012 Feb;18(1):218-28. doi: 10.1017/S1431927611012347. Epub 2011 Dec 8.

Abstract

Three-dimensional (3D) datasets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). Deconvolution of the 3D datasets was applied to obtain the highest possible axial resolution. The deconvolution involved two different point spread functions, each calculated iteratively via blind deconvolution. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but also led to a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for the highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only.

摘要

使用焦列像差校正扫描透射电子显微镜(STEM),对置于氮化硅膜两侧的金纳米粒子进行了三维(3D)数据集的记录。对 3D 数据集进行了反卷积处理,以获得尽可能高的轴向分辨率。反卷积涉及两个不同的点扩散函数,每个函数都通过盲反卷积迭代计算。测试了不同厚度的支撑膜,以研究光束展宽对反卷积的影响。结果表明,反卷积的几次迭代可有效降低成像噪声。随着迭代次数的增加,轴向分辨率提高,并且保留了大部分结构信息。根据特定数据集,另外几次迭代最多可将轴向分辨率提高 4 到 6 倍,最高可达 8nm,但也会导致图像中纳米粒子的横向尺寸减小。因此,针对最高轴向分辨率进行优化的反卷积过程最适合于仅对纳米粒子的 3D 位置感兴趣的应用。

相似文献

4
Three-dimensional scanning transmission electron microscopy of biological specimens.
Microsc Microanal. 2010 Feb;16(1):54-63. doi: 10.1017/S1431927609991280.
5
The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy.
Microsc Microanal. 2011 Oct;17(5):817-26. doi: 10.1017/S1431927611011913. Epub 2011 Aug 31.
6
Atomic-resolution scanning transmission electron microscopy through 50-nm-thick silicon nitride membranes.
Appl Phys Lett. 2011 Feb 28;98(9):93109. doi: 10.1063/1.3561758. Epub 2011 Mar 2.
7
Model-based deconvolution for particle analysis applied to a through-focus series of HAADF-STEM images.
Microscopy (Oxf). 2023 Aug 4;72(4):368-380. doi: 10.1093/jmicro/dfac070.
8
Improving the depth resolution of STEM-ADF sectioning by 3D deconvolution.
Microscopy (Oxf). 2021 Mar 24;70(2):241-249. doi: 10.1093/jmicro/dfaa056.
9
Image deconvolution in spherical aberration-corrected high-resolution transmission electron microscopy.
Ultramicroscopy. 2006 Apr;106(6):539-46. doi: 10.1016/j.ultramic.2006.01.008. Epub 2006 Feb 21.
10
Electron beam broadening in electron-transparent samples at low electron energies.
J Microsc. 2019 Jun;274(3):150-157. doi: 10.1111/jmi.12793. Epub 2019 May 2.

引用本文的文献

1
Single-particle cryo-EM structures from iDPC-STEM at near-atomic resolution.
Nat Methods. 2022 Sep;19(9):1126-1136. doi: 10.1038/s41592-022-01586-0. Epub 2022 Sep 5.
2
Perspective: Emerging strategies for determining atomic-resolution structures of macromolecular complexes within cells.
J Struct Biol. 2022 Mar;214(1):107827. doi: 10.1016/j.jsb.2021.107827. Epub 2021 Dec 14.
3
Three-dimensional deconvolution processing for STEM cryotomography.
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27374-27380. doi: 10.1073/pnas.2000700117. Epub 2020 Oct 19.
4
Methods to label, image, and analyze the complex structural architectures of microvascular networks.
Microcirculation. 2019 Jul;26(5):e12520. doi: 10.1111/micc.12520. Epub 2019 Jan 17.

本文引用的文献

1
The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy.
Microsc Microanal. 2011 Oct;17(5):817-26. doi: 10.1017/S1431927611011913. Epub 2011 Aug 31.
2
Atomic-resolution scanning transmission electron microscopy through 50-nm-thick silicon nitride membranes.
Appl Phys Lett. 2011 Feb 28;98(9):93109. doi: 10.1063/1.3561758. Epub 2011 Mar 2.
4
Extended depth of field for high-resolution scanning transmission electron microscopy.
Microsc Microanal. 2011 Feb;17(1):75-80. doi: 10.1017/S1431927610094171. Epub 2010 Dec 2.
5
Three-dimensional optical sectioning by scanning confocal electron microscopy with a stage-scanning system.
Microsc Microanal. 2010 Jun;16(3):233-8. doi: 10.1017/S1431927610000127. Epub 2010 Mar 30.
6
Atmospheric pressure scanning transmission electron microscopy.
Nano Lett. 2010 Mar 10;10(3):1028-31. doi: 10.1021/nl904254g.
7
Three-dimensional scanning transmission electron microscopy of biological specimens.
Microsc Microanal. 2010 Feb;16(1):54-63. doi: 10.1017/S1431927609991280.
8
Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope.
Philos Trans A Math Phys Eng Sci. 2009 Sep 28;367(1903):3825-44. doi: 10.1098/rsta.2009.0074.
9
Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM.
J Electron Microsc (Tokyo). 2009 Jun;58(3):157-65. doi: 10.1093/jmicro/dfn029. Epub 2009 Jan 22.
10
Molecular electron microscopy: state of the art and current challenges.
ACS Chem Biol. 2008 May 16;3(5):268-81. doi: 10.1021/cb800037d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验