Suppr超能文献

匹伐他汀:对血脂参数的新作用。

Pitavastatin: novel effects on lipid parameters.

作者信息

Chapman M John

机构信息

Institut National de la Santé et de la Recherche Médicale UMR-S939, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 Blud l'Hôpital, 75651 Paris Cedex 13, France.

出版信息

Atheroscler Suppl. 2011 Nov;12(3):277-84. doi: 10.1016/S1567-5688(11)70887-X.

Abstract

Atherogenic dyslipidemia is characterised by high levels of triglycerides, low levels of high-density lipoprotein-cholesterol (HDL-C), and moderate to marked elevations in low-density lipoprotein-cholesterol (LDL-C) concentrations; such dyslipidemia is further characterised by high apolipoprotein B (apoB): apolipoprotein A1 (apoA1) ratios. Numerous clinical trials have demonstrated that statins are effective in lowering LDL-C and reducing cardiovascular (CV) risk in people with dyslipidemia. However, the most effective treatments should target all of the key atherogenic features, rather than LDL-C alone. Pitavastatin is a new member of the statin class whose distinct pharmacological features translate into a broad spectrum of action on both apoB-containing and apoA1-containing lipoprotein components of the atherogenic lipid profile. The efficacy and safety of this statin has been demonstrated by a large clinical development programme conducted both in Japanese and Caucasian populations. Phase III and IV studies in a wide range of patients with primary hypercholesterolemia or combined dyslipidemia showed that 12 weeks' treatment with pitavastatin l-4 mg was well tolerated, significantly improved lipid profiles (including LDL-C, TG, and HDL-C levels) and increased the EAS-/NCEP ATP Ill-recommended LDL-C target attainment rate to a similar or greater degree as comparable doses of atorvastatin, simvastatin, or pravastatin. Results were similar across all patient groups and were generally sustained after 52 weeks of treatment. However, whereas the effects of atorvastatin and simvastatin on HDL-C levels remained constant over the long term, pitavastatin-treated patients experienced progressive and maintained elevations in HDL-C, ultimately increasing by up to 14.3% vs. initial baseline. In this context, it is significant that the in vitro studies of Yamashita et al. [J Atheroscler Thromb 2010;17:436-51] have shown pitavastatin to be distinguished by its potent stimulation of apoA1 production in hepatocyte-like cells. These findings suggest that pitavastatin may be highly efficacious in raising levels of lipid-poor apoA1 particles, which are known to be highly active in ABCA1-mediated cellular cholesterol efflux, an observation which is pertinent to the excessive accumulation of cholesterol in macrophage foam cells of the atherosclerotic plaque. Indeed, the intravascular remodelling and maturation of lipid-poor apoA1 particles is known to drive flux of apoA1, cholesterol and phospholipid through the HDL pathway. It is equally relevant that pitavastatin therapy has been shown to be efficacious in markedly reducing coronary atheroma volume in acute coronary syndrome patients in the JAPAN-ACS trial, a therapeutic effect which may be linked to its impact on apoA1/HDL metabolism and function. Overall, Phase III and IV studies demonstrate that pitavastatin 1-4 mg is well tolerated, attenuates the atherogenic lipid profile and increases LDL-C target attainment rates with a similar or greater efficacy to comparable doses of atorvastatin, simvastatin and pravastatin. Furthermore, pitavastatin may be particularly beneficial in high-risk patients with elevated concentrations of TG-rich lipoproteins and low levels of HDL-C, and in whom the atheroprotective function of HDL particles is typically defective; significantly, such patients typically exhibit persistent, residual cardiometabolic risk even when LDL-C is at goal. In this context, it is relevant that such patient groups cover a wide spectrum of metabolic diseases, including metabolic syndrome, type 2 diabetes, coronary disease, familial and non-familial forms of hypercholesterolemia, auto-immune diseases such as rheumatoid arthritis and lupus, renal disease and some forms of hepatic insufficiency.

摘要

致动脉粥样硬化性血脂异常的特征是甘油三酯水平升高、高密度脂蛋白胆固醇(HDL-C)水平降低以及低密度脂蛋白胆固醇(LDL-C)浓度中度至显著升高;这种血脂异常的进一步特征是载脂蛋白B(apoB)与载脂蛋白A1(apoA1)的比例较高。大量临床试验表明,他汀类药物可有效降低血脂异常患者的LDL-C水平并降低心血管(CV)风险。然而,最有效的治疗应针对所有关键的致动脉粥样硬化特征,而不仅仅是LDL-C。匹伐他汀是他汀类药物中的新成员,其独特的药理学特性转化为对致动脉粥样硬化脂质谱中含apoB和含apoA1的脂蛋白成分具有广泛的作用。在日本和白种人群中进行的大型临床开发项目已证明了这种他汀类药物的疗效和安全性。针对广泛的原发性高胆固醇血症或混合性血脂异常患者进行的III期和IV期研究表明,使用1-4mg匹伐他汀治疗12周耐受性良好,能显著改善血脂谱(包括LDL-C、甘油三酯和HDL-C水平),并将欧洲动脉粥样硬化学会/美国国家胆固醇教育计划成人治疗组第三次报告(EAS-/NCEP ATP III)推荐的LDL-C达标率提高到与阿托伐他汀、辛伐他汀或普伐他汀相当剂量相似或更高的程度。所有患者组的结果相似,且在治疗52周后通常能持续保持。然而,阿托伐他汀和辛伐他汀对HDL-C水平的影响长期保持不变,而接受匹伐他汀治疗的患者HDL-C水平则持续升高并维持在较高水平,最终相较于初始基线水平升高了14.3%。在此背景下,山下等人[《动脉粥样硬化与血栓形成杂志》2010年;17:436 - 51]的体外研究表明匹伐他汀的独特之处在于其能有效刺激肝样细胞中apoA1的产生,这一点具有重要意义。这些发现表明,匹伐他汀在提高低脂apoA1颗粒水平方面可能具有高效性,已知这些颗粒在ABCA1介导的细胞胆固醇流出中具有高度活性,这一观察结果与动脉粥样硬化斑块中巨噬细胞泡沫细胞内胆固醇的过度积累相关。事实上,已知低脂apoA1颗粒的血管内重塑和成熟会驱动apoA1、胆固醇和磷脂通过HDL途径流动。同样相关的是,在日本急性冠状动脉综合征(JAPAN-ACS)试验中,已证明匹伐他汀治疗在显著减少急性冠状动脉综合征患者的冠状动脉粥样瘤体积方面有效,这种治疗效果可能与其对apoA1/HDL代谢和功能的影响有关。总体而言,III期和IV期研究表明,1-4mg匹伐他汀耐受性良好,可改善致动脉粥样硬化的血脂谱,并提高LDL-C达标率,其疗效与阿托伐他汀、辛伐他汀和普伐他汀的相当剂量相似或更高。此外,匹伐他汀可能对富含甘油三酯的脂蛋白浓度升高且HDL-C水平较低的高危患者特别有益,在这些患者中,HDL颗粒的抗动脉粥样硬化功能通常存在缺陷;重要的是,即使LDL-C达到目标水平,这类患者通常仍表现出持续的残余心脏代谢风险。在此背景下,这类患者群体涵盖了广泛的代谢性疾病,包括代谢综合征、2型糖尿病、冠状动脉疾病、家族性和非家族性高胆固醇血症、类风湿关节炎和狼疮等自身免疫性疾病、肾脏疾病以及某些形式的肝功能不全,这一点具有相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验