Suppr超能文献

GALNT2 功能丧失性突变杂合子可改善人类血浆甘油三酯清除率。

Heterozygosity for a loss-of-function mutation in GALNT2 improves plasma triglyceride clearance in man.

机构信息

Department of Vascular Medicine, Academic Medical Center, Amsterdam 1105AZ, The Netherlands.

出版信息

Cell Metab. 2011 Dec 7;14(6):811-8. doi: 10.1016/j.cmet.2011.11.005.

Abstract

Genome-wide association studies have identified GALNT2 as a candidate gene in lipid metabolism, but it is not known how the encoded enzyme ppGalNAc-T2, which contributes to the initiation of mucin-type O-linked glycosylation, mediates this effect. In two probands with elevated plasma high-density lipoprotein cholesterol and reduced triglycerides, we identified a mutation in GALNT2. It is shown that carriers have improved postprandial triglyceride clearance, which is likely attributable to attenuated glycosylation of apolipoprotein (apo) C-III, as observed in their plasma. This protein inhibits lipoprotein lipase (LPL), which hydrolyses plasma triglycerides. We show that an apoC-III-based peptide is a substrate for ppGalNAc-T2 while its glycosylation by the mutant enzyme is impaired. In addition, neuraminidase treatment of apoC-III which removes the sialic acids from its glycan chain decreases its potential to inhibit LPL. Combined, these data suggest that ppGalNAc-T2 can affect lipid metabolism through apoC-III glycosylation, thereby establishing GALNT2 as a lipid-modifying gene.

摘要

全基因组关联研究已经确定 GALNT2 是脂质代谢的候选基因,但尚不清楚编码的 ppGalNAc-T2 酶如何介导这种作用,该酶有助于粘蛋白型 O-糖基化的起始。在两名血浆高密度脂蛋白胆固醇升高和甘油三酯降低的先证者中,我们发现了 GALNT2 中的一个突变。研究表明,携带者餐后甘油三酯清除率提高,这可能归因于载脂蛋白 (apo) C-III 的糖基化减弱,如在其血浆中观察到的那样。这种蛋白质抑制脂蛋白脂肪酶 (LPL),后者水解血浆中的甘油三酯。我们表明,基于 apoC-III 的肽是 ppGalNAc-T2 的底物,而突变酶对其糖基化的作用受损。此外,神经氨酸酶处理 apoC-III 可从其聚糖链上去除唾液酸,从而降低其抑制 LPL 的能力。综上所述,这些数据表明 ppGalNAc-T2 可以通过 apoC-III 糖基化影响脂质代谢,从而将 GALNT2 确立为一种脂质修饰基因。

相似文献

1
2
Human apolipoprotein A-II determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome.
Arterioscler Thromb Vasc Biol. 2010 Feb;30(2):232-8. doi: 10.1161/ATVBAHA.109.198226. Epub 2009 Nov 12.
3
Novel congenital disorder of O-linked glycosylation caused by GALNT2 loss of function.
Brain. 2020 Apr 1;143(4):1114-1126. doi: 10.1093/brain/awaa063.
4
Apolipoproteins C-I and C-III inhibit lipoprotein lipase activity by displacement of the enzyme from lipid droplets.
J Biol Chem. 2013 Nov 22;288(47):33997-34008. doi: 10.1074/jbc.M113.495366. Epub 2013 Oct 11.
5
Emerging Evidence that ApoC-III Inhibitors Provide Novel Options to Reduce the Residual CVD.
Curr Atheroscler Rep. 2019 May 20;21(8):27. doi: 10.1007/s11883-019-0791-9.
7
Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL.
J Lipid Res. 2017 Sep;58(9):1893-1902. doi: 10.1194/jlr.M078220. Epub 2017 Jul 10.
9
Apolipoprotein-CIII -Glycosylation, a Link between and Plasma Lipids.
Int J Mol Sci. 2023 Oct 2;24(19):14844. doi: 10.3390/ijms241914844.
10
Paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice.
Eur J Pharmacol. 2018 Oct 5;836:122-128. doi: 10.1016/j.ejphar.2018.08.006. Epub 2018 Aug 7.

引用本文的文献

1
Loss of GalNAc-T14 links O-glycosylation defects to alterations in B cell homing in IgA nephropathy.
J Clin Invest. 2025 Mar 18;135(10). doi: 10.1172/JCI181164. eCollection 2025 May 15.
2
Cosmc regulates O-glycan extension in murine hepatocytes.
Glycobiology. 2024 Aug 30;34(10). doi: 10.1093/glycob/cwae069.
4
Exploring apolipoprotein C-III: pathophysiological and pharmacological relevance.
Cardiovasc Res. 2024 Feb 17;119(18):2843-2857. doi: 10.1093/cvr/cvad177.
5
Apolipoprotein-CIII -Glycosylation, a Link between and Plasma Lipids.
Int J Mol Sci. 2023 Oct 2;24(19):14844. doi: 10.3390/ijms241914844.
7
Systematic Assessment of Protein C-Termini Mutated in Human Disorders.
Biomolecules. 2023 Feb 12;13(2):355. doi: 10.3390/biom13020355.
9
Lipoprotein sialylation in atherosclerosis: Lessons from mice.
Front Endocrinol (Lausanne). 2022 Sep 6;13:953165. doi: 10.3389/fendo.2022.953165. eCollection 2022.
10
The known unknowns of apolipoprotein glycosylation in health and disease.
iScience. 2022 Aug 28;25(9):105031. doi: 10.1016/j.isci.2022.105031. eCollection 2022 Sep 16.

本文引用的文献

3
Biological, clinical and population relevance of 95 loci for blood lipids.
Nature. 2010 Aug 5;466(7307):707-13. doi: 10.1038/nature09270.
4
The pursuit of genome-wide association studies: where are we now?
J Hum Genet. 2010 Apr;55(4):195-206. doi: 10.1038/jhg.2010.19. Epub 2010 Mar 19.
5
Filter-based hybridization capture of subgenomes enables resequencing and copy-number detection.
Nat Methods. 2009 Jul;6(7):507-10. doi: 10.1038/nmeth.1343. Epub 2009 Jun 21.
6
A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection.
Science. 2008 Dec 12;322(5908):1702-5. doi: 10.1126/science.1161524.
8
Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation.
Arterioscler Thromb Vasc Biol. 2006 Jun;26(6):1236-45. doi: 10.1161/01.ATV.0000219283.10832.43. Epub 2006 Mar 30.
9
Genetics and regulation of angiopoietin-like proteins 3 and 4.
Curr Opin Lipidol. 2006 Apr;17(2):152-6. doi: 10.1097/01.mol.0000217896.67444.05.
10
Apolipoprotein C-III isoforms: kinetics and relative implication in lipid metabolism.
J Lipid Res. 2006 Jun;47(6):1212-8. doi: 10.1194/jlr.M500455-JLR200. Epub 2006 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验