Suppr超能文献

在未知多维高斯分布背景下对异常观测值的检测。

Detection of aberrant observations in a background of an unknown multidimensional Gaussian distribution.

作者信息

Gelsema E S, Leijnse B, Wulkan R W

机构信息

Department of Medical Informatics, Erasmus University, Rotterdam, The Netherlands.

出版信息

Methods Inf Med. 1990 Jul;29(3):236-42.

PMID:2215265
Abstract

An exploratory iterative technique for the detection of aberrant observations on a background of a multidimensional Gaussian distribution is described. Its development was motivated by the analysis of a set of three measurements reflecting the acid-base metabolism in the blood of 2,402 intensive care patients. This new, three-dimensional treatment of such data yields a meaningful description. A technical evaluation of the method, using artificially generated data is also presented. It is shown that the model parameters of the underlying Gaussian distributions are determined with good accuracy and that the accuracy with which the contamination is estimated increases with increasing distance of the contaminating observations from the mean.

摘要

本文描述了一种用于在多维高斯分布背景下检测异常观测值的探索性迭代技术。对2402名重症监护患者血液中反映酸碱代谢的一组三项测量值进行分析,推动了该技术的发展。这种对这类数据的全新三维处理方式给出了有意义的描述。本文还给出了使用人工生成数据对该方法进行的技术评估。结果表明,基础高斯分布的模型参数能够以较高的精度确定,并且随着污染观测值与均值距离的增加,污染估计的精度也会提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验