Dept of Pharmacology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065-4896, USA.
Circulation. 2012 Jan 17;125(2):298-307. doi: 10.1161/CIRCULATIONAHA.111.059097. Epub 2011 Dec 9.
Although natriuretic peptides are considered cardioprotective, clinical heart failure trials with recombinant brain natriuretic peptide (nesiritide) failed to prove it. Unsuspected proadrenergic effects might oppose the anticipated benefits of natriuretic peptides.
We investigated whether natriuretic peptides induce catecholamine release in isolated hearts, sympathetic nerve endings (cardiac synaptosomes), and PC12 cells bearing a sympathetic neuron phenotype. Perfusion of isolated guinea pig hearts with brain natriuretic peptide elicited a 3-fold increase in norepinephrine release, which doubled in ischemia/reperfusion conditions. Brain natriuretic peptide and atrial natriuretic peptide also released norepinephrine from cardiac synaptosomes and dopamine from nerve growth factor-differentiated PC12 cells in a concentration-dependent manner. These catecholamine-releasing effects were associated with an increase in intracellular calcium and abolished by blockade of calcium channels and calcium transients, demonstrating a calcium-dependent exocytotic process. Activation of the guanylyl cyclase-cyclic GMP-protein-kinase-G system with nitroprusside or membrane-permeant cyclic GMP analogs mimicked the proexocytotic effect of natriuretic peptides, an action associated with an increase in intracellular cyclic AMP (cAMP) and protein-kinase-A activity. Cyclic AMP enhancement resulted from an inhibition of phosphodiesterase type 3-induced cAMP hydrolysis. Collectively, these findings indicate that, by inhibiting phosphodiesterase type 3, natriuretic peptides sequentially enhance intracellular cAMP levels, protein kinase A activity, intracellular calcium, and catecholamine exocytosis.
Our results show that natriuretic peptides, at concentrations likely to be reached at cardiac sympathetic nerve endings in advanced congestive heart failure, promote norepinephrine release via a protein kinase G-induced inhibition of phosphodiesterase type 3-mediated cAMP hydrolysis. We propose that this proadrenergic action may counteract the beneficial cardiac and hemodynamic effects of natriuretic peptides and thus explain the ineffectiveness of nesiritide as a cardiac failure medication.
尽管利钠肽被认为具有心脏保护作用,但使用重组脑利钠肽(奈西立肽)进行的心力衰竭临床研究未能证明这一点。未被察觉的拟交感神经效应可能会抵消利钠肽预期的益处。
我们研究了利钠肽是否会在分离的心脏、交感神经末梢(心脏突触体)和表达交感神经元表型的 PC12 细胞中诱导儿茶酚胺释放。用脑利钠肽灌注分离的豚鼠心脏可引起去甲肾上腺素释放增加 3 倍,在缺血/再灌注条件下增加 1 倍。脑利钠肽和心房利钠肽也可浓度依赖性地从心脏突触体中释放去甲肾上腺素和神经生长因子分化的 PC12 细胞中的多巴胺。这些儿茶酚胺释放效应与细胞内钙增加有关,并被钙通道和钙瞬变阻断所消除,表明这是一种钙依赖性的出胞过程。用硝普盐或膜通透型环鸟苷酸类似物激活鸟苷酸环化酶-环鸟苷酸-蛋白激酶-G 系统可模拟利钠肽的促出胞作用,这种作用与细胞内环腺苷酸(cAMP)和蛋白激酶-A 活性增加有关。cAMP 增强是由于抑制磷酸二酯酶 3 诱导的 cAMP 水解。总的来说,这些发现表明,利钠肽通过抑制磷酸二酯酶 3,依次增强细胞内 cAMP 水平、蛋白激酶 A 活性、细胞内钙和儿茶酚胺的出胞作用。
我们的结果表明,在充血性心力衰竭晚期心脏交感神经末梢可能达到的浓度下,利钠肽通过蛋白激酶 G 诱导的抑制磷酸二酯酶 3 介导的 cAMP 水解来促进去甲肾上腺素的释放。我们提出,这种拟交感神经作用可能会抵消利钠肽的有益的心脏和血液动力学作用,从而解释奈西立肽作为心力衰竭药物无效的原因。