Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
Am J Physiol Cell Physiol. 2012 Mar 15;302(6):C880-91. doi: 10.1152/ajpcell.00238.2011. Epub 2011 Dec 7.
Increased ammonium (NH(4)(+)/NH(3)) in the brain is a significant factor in the pathophysiology of hepatic encephalopathy, which involves altered glutamatergic neurotransmission. In glial cell cultures and brain slices, glutamate uptake either decreases or increases following acute ammonium exposure but the factors responsible for the opposing effects are unknown. Excitatory amino acid transporter isoforms EAAT1, EAAT2, and EAAT3 were expressed in Xenopus oocytes to study effects of ammonium exposure on their individual function. Ammonium increased EAAT1- and EAAT3-mediated [(3)H]glutamate uptake and glutamate transport currents but had no effect on EAAT2. The maximal EAAT3-mediated glutamate transport current was increased but the apparent affinities for glutamate and Na(+) were unaltered. Ammonium did not affect EAAT3-mediated transient currents, indicating that EAAT3 surface expression was not enhanced. The ammonium-induced stimulation of EAAT3 increased with increasing extracellular pH, suggesting that the gaseous form NH(3) mediates the effect. An ammonium-induced intracellular alkalinization was excluded as the cause of the enhanced EAAT3 activity because 1) ammonium acidified the oocyte cytoplasm, 2) intracellular pH buffering with MOPS did not reduce the stimulation, and 3) ammonium enhanced pH-independent cysteine transport. Our data suggest that the ammonium-elicited uptake stimulation is not caused by intracellular alkalinization or changes in the concentrations of cotransported ions but may be due to a direct effect on EAAT1/EAAT3. We predict that EAAT isoform-specific effects of ammonium combined with cell-specific differences in EAAT isoform expression may explain the conflicting reports on ammonium-induced changes in glial glutamate uptake.
脑中氨(NH(4)(+)/NH(3))的增加是肝性脑病病理生理学的一个重要因素,其中涉及到谷氨酸能神经传递的改变。在神经胶质细胞培养物和脑切片中,急性氨暴露后谷氨酸摄取要么减少,要么增加,但导致相反效果的因素尚不清楚。兴奋性氨基酸转运体同工型 EAAT1、EAAT2 和 EAAT3 在非洲爪蟾卵母细胞中表达,以研究氨暴露对其各自功能的影响。氨增加了 EAAT1 和 EAAT3 介导的 [(3)H]谷氨酸摄取和谷氨酸转运电流,但对 EAAT2 没有影响。最大的 EAAT3 介导的谷氨酸转运电流增加,但谷氨酸和 Na(+)的表观亲和力不变。氨不影响 EAAT3 介导的瞬时电流,表明 EAAT3 表面表达没有增强。随着细胞外 pH 值的增加,氨诱导的 EAAT3 刺激增加,表明气态 NH(3)介导了这种作用。氨诱导的细胞内碱化被排除为增强 EAAT3 活性的原因,因为 1)氨使卵母细胞质酸化,2)用 MOPS 进行细胞内 pH 缓冲不会降低刺激,3)氨增强 pH 独立的半胱氨酸转运。我们的数据表明,氨诱导的摄取刺激不是由细胞内碱化或共转运离子浓度的变化引起的,而是可能直接作用于 EAAT1/EAAT3。我们预测,氨对 EAAT 同工型的特异性影响与 EAAT 同工型表达的细胞特异性差异相结合,可能解释了关于氨诱导的胶质细胞谷氨酸摄取变化的相互矛盾的报告。