Suppr超能文献

尿素在碳纳米管中的分子导线:分子动力学研究。

Molecular wire of urea in carbon nanotube: a molecular dynamics study.

机构信息

Bio-X Lab, Department of Physics, and Soft Matter Research Center, Zhejiang University, Hangzhou, 310027, China.

出版信息

Nanoscale. 2012 Jan 21;4(2):652-8. doi: 10.1039/c1nr10793c. Epub 2011 Dec 8.

Abstract

We perform molecular dynamics simulations of narrow single-walled carbon nanotubes (SWNTs) in aqueous urea to investigate the structure and dynamical behavior of urea molecules inside the SWNT. Even at low urea concentrations (e.g., 0.5 M), we have observed spontaneous and continuous filling of SWNT with a one-dimensional urea wire (leaving very few water molecules inside the SWNT). The urea wire is structurally ordered, both translationally and orientationally, with a contiguous hydrogen-bonded network and concerted urea's dipole orientations. Interestingly, despite the symmetric nature of the whole system, the potential energy profile of urea along the SWNT is asymmetric, arising from the ordering of asymmetric urea partial charge distribution (or dipole moment) in confined environment. Furthermore, we study the kinetics of confined urea and find that the permeation of urea molecules through the SWNT decreases significantly (by a factor of ∼20) compared to that of water molecules, due to the stronger dispersion interaction of urea with SWNT than water, and a maximum in urea permeation happens around a concentration of 5 M. These findings might shed some light on the better understanding of unique properties of molecular wires (particularly the wires formed by polar organic small molecules) confined within both artificial and biological nanochannels, and are expected to have practical applications such as the electronic devices for signal transduction and multiplication at the nanoscale.

摘要

我们对单壁碳纳米管(SWNT)在含脲水溶液中的分子动力学模拟,以研究 SWNT 内脲分子的结构和动力学行为。即使在低浓度脲(例如 0.5 M)的情况下,我们也观察到 SWNT 自发且连续地填充一维脲线(SWNT 内几乎没有水分子)。脲线在结构上是有序的,无论是在平移还是取向方面,都具有连续的氢键网络和协同的脲偶极取向。有趣的是,尽管整个系统具有对称性,但脲在 SWNT 上的势能分布是不对称的,这是由于受限环境中脲部分电荷分布(或偶极矩)的不对称性导致的。此外,我们研究了受限脲的动力学,发现与水分子相比,脲分子通过 SWNT 的渗透率显著降低(约降低 20 倍),这是由于脲与 SWNT 的色散相互作用强于水,并且在 5 M 左右脲的渗透率出现最大值。这些发现可能有助于更好地理解受限于人工和生物纳腔体内的分子线(特别是由极性有机小分子形成的分子线)的独特性质,并有望在纳尺度的信号转导和倍增等电子器件中得到实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验